"BIG IRON" AI SYSTEMS MIKE HOUSTON, VP AND CHIEF ARCHITECT OF AI SYSTEMS | FEB. 28, 2022

AI SUPERCOMPUTING DELIVERING SCIENTIFIC BREAKTHROUGHS

EXASCALE AI SCIENCE

AI ADOPTION ACROSS EVERY INDUSTRY

EXPLODING DATA AND MODEL SIZE

ACCELERATED COMPUTING DELIVERS GLOBAL ENERGY SAVINGS ON AI AND HPC Up to 40X Energy Savings

0X ——	MI Perf Tr
10X	
20X	
30X	
40X	
50X	

Relative Energy Efficiency Speedup (GPU vs CPU)

raining

MLPerf Inference

MLPerf AI Training: 1.0-1058, 1.0-1059 | 1.0-1042, 1.0-1043 MLPerf AI Inference: 1.0-30 | 1.0-19, 1.0-20, 1.0-22 HPC Appps: AMBER, Chroma, GTC, LAMMPS, NAMD, SPECFEM3D | DGX A100 (4 GPU) vs Dual Socket Platinum 8280

TWh

Annual Energy Savings Transitioning AI+HPC to GPUs

HPC

ENERGY EFFICIENT SYSTEMS FOR MASSIVE WORKLOADS WITH HYPERSCALE SENSIBILITIES

Speed and feed matching

- Thermal and power design
- Interconnect design
- Deployability
- Operability
- Flexibility
- Expandability

80GB HBM2e For largest datasets and models

Multi-Instance GPU

NVIDIA A100 80GB Supercharging The World's Highest Performing AI Supercomputing GPU

2TB/s +World's highest memory bandwidth to feed the world's fastest GPU

3rd Gen NVLink

🥸 NVIDIA.

3rd Gen Tensor Cores Faster, Flexible, Easier to use 20x AI Perf with TF32 2.5x HPC Perf

New Multi-Instance GPU Optimal utilization with right sized GPU 7x Simultaneous Instances per GPU

AMPERE ARCHITECTURE

3rd Gen NVLINK and NVSWITCH Efficient Scaling to Enable Super GPU 2X More Bandwidth

2nd Gen RT Cores Up to 2X throughput of previous generation

New Sparsity Acceleration Harness Sparsity in Al Models 2x Al Performance

Range of FP32 and Precision of FP16 Input in FP32 and Accumulation in FP32 No Code Change Speed-up for Training

NEW TF32 TENSOR CORES

BFLOAT16

<mark> NVIDIA</mark>.

Sec Sequences

TF32 FOR AI TRAINING - BERT

GPUs	8x NVIDIA A100
GPU Memory	320 GB total
Poak porformanco	5 petaFLOPS AI
reak performance	10 petaOPS INT8
NVSwitches	6
System Power Usage	6.5kW max
	Dual AMD Rome 7742
	128 cores total, 2.25 GHz(base), 3.4GHz (max boost)
System Memory	1TB
	8x Single-Port Mellanox ConnectX-6 200Gb/s HDR
Networking	Infiniband (Compute Network)
i te citoritang	1x (or 2x*) Dual-Port Mellanox ConnectX-6 200GB/s
	HDR Infiniband (Storage Network also used for Eth*)
Storage	OS: 2x 1.92TB M.2 NVME drives
	Internal Storage: 15TB (4x 3.86TB) U.2 NVME drives
Software	Ubuntu Linux OS (5.3+ kernel)
System Weight	271 lbs (123 kgs)
Dackaged System Woight	215 lbc (142 lccc)
rackaged system weight	313 LDS (143 KgS)
Height	6U
Operating temperature range	5C to 30C (41F to 86F)

* Optional upgrades

NVIDIA DGX A100

Many NICs on compute plane to try to get closer to NVLink performance. Heavy focus on IO capabilities to "feed the beast".

Dual 64-core AMD Rome CPU 1 TB RAM

8x NVIDIA A100 GPUs

6x NVIDIA NVSwitches

4.8 TB/s Bi-Directional Bandwidth 600 GB/s GPU-to-GPU Bandwidth

15 TB Gen4 NVME SSD

NVIDIA DGX A100 **INTERNAL I/O**

EFFICIENT BUILDING BLOCKS Scalable Units

8898 - -

DESIGNING FOR PERFORMANCE In the datacenter

In-band management

A POD AT ANY SCALE Growing with Scalable Units (SU)

Full fat tree compute fabric

Nodes	SUs	QM8790 Switches			Cables		
		Leaf	Spine	Core	Leaf	Spine	ſ
10	1/2	8	2		80	80	
20 (Single SU)	1	8	4		160	160	
40	2	16	10		320	320	
80	4	32	20		640	640	
100	5	40	20		800	800	
140 (DGX A100 SuperPOD)	7	56	80	28	1120	1120	

100 node example

Core	
560	

Multi-node IB compute

Designed with Mellanox 200Gb HDR IB network

Separate compute and storage fabric

- 8 Links for compute
- 2 Links for storage (Lustre)
- Both networks share a similar fat-tree design

Modular POD design

- 140 DGX A100 nodes are fully connected in a POD
- POD contains compute nodes and storage
- All nodes and storage are usable between PODs
- resilient to failures at the spine level

Sharp optimized design

- Leaf and Spines organized in HCA planes
- For a POD, all HCA1 from 140 DGX-2 connect to a HCA1 Plane fat-tree network
- - Only use core switches when

 - 2. Moving any data between PODs

Traffic from HCA1 to HCA1 between any two nodes in a POD stay either at the Leaf or Spine level

1. Moving data between HCA planes (e.g. mlx5_0 to mlx5_1 in another system)

Selene SuperPOD

No cores

A POD AT ANY SCALE Growing with Scalable Units (SU)

Storage fabric with different ratios

		QM8790 Switches		Cables			Subscription		
Nodes Ports	Po		Ports	Leaf	Spine	Leaf	Spine	Storage	Ratio
10	1/2	4	2	1	20	20	4	1:1	
20	1	8	2	1	40	32	8	3:2	
40	2	16	4	2	80	64	16	3:2	
80	4	32	8	4	160	128	32	3:2	
100	5	40	10	4	200	160	40	3:2	
140	7	56	14	8	280	224	56	5:4	

100 node example

DGX A100 SuperPOD A modular model

1K GPU SuperPOD Cluster

- 140 DGX A100 nodes (1120 GPUs) in a GPU POD
- 1st tier fast storage DDN AI400x with Lustre
- Mellanox HDR 200Gb/s InfiniBand Full Fat-tree
- Network optimized for AI and HPC

DGX A100 Nodes

- 2x AMD 7742 EPYC CPUs + 8x A100 GPUs
- NVLINK 3.0 Fully Connected Switch
- 8 Compute + 2 Storage HDR IB Ports

A fast interconnect

- Modular IB Fat-tree
- Separate network for Compute vs Storage
- Adaptive routing and SharpV2 support for offload

The DGXA100 Superpod An extensible model

POD to POD Modular IB Fat-tree • Direct connect POD to POD Separate network for Compute vs Storage • Adaptive routing and SharpV2 support for offload •

. Core IB Switches Distributed Between PODs

The DGXA100 Superpod An extensible model

POD to POD Modular IB Fat-tree . Core IB Switches Distributed Between PODs Direct connect POD to POD Separate network for Compute vs Storage • Adaptive routing and SharpV2 support for offload •

STORAGE HIERARCHY

- Memory (file) cache (aggregate): 224TB/sec 1.1PB (2TB/node)
- NVMe cache (aggregate): 28TB/Sec 16.8PB (30TB/node)
- Network filesystem (cache Lustre): 2TB/sec 10PB
- Object storage: 100GB/sec 100+PB

60KM OF IB CABLES a.k.a. why good dressing is crucial

SELENE DGX A100 SuperPOD Deployment

- #6 on TOP500 (63.46 PetaFLOPS HPL)
- #10 on Green500 (26.2 GF/W) single scalable unit
- #5 on HPCG (1.6 PetaFLOPS)
- #3 on HPL-AI (556 PetaFLOPS)
- Fastest Industrial System in U.S. 1+ ExaFLOPS AI
- Built with NVIDIA DGX SuperPOD Architecture
 - NVIDIA DGX A100 and NVIDIA Mellanox IB
 - NVIDIA's decade of AI experience

NVIDIA.

.) gle scalable unit

NVIDIA

+ ExaFLOPS Al hitecture **Configuration:**

- 4480 NVIDIA A100 Tensor Core GPUs
- 560 NVIDIA DGX A100 systems
- 850 Mellanox 200G HDR IB switches
- 14 PB of all-flash storage

SHARP OFFLOADS COMPUTE INTO NETWORK HDR200 Selene Results

AIR COOLED DGX SUPERPOD

Airflow

LIQUID COOLING PROTOTYPE ~15% Energy Efficiency Improvement

SOFTWARE OPERATIONS

- Deep Learning Model:
 - Hyperparameters tuned for multi-node scaling
 - Multi-node launcher scripts
- Deep Learning Container:
 - Optimized TensorFlow, GPU libraries, and multi-node software
- Host:
 - Host OS, GPU driver, IB driver, container runtime engine (docker, enroot)

SCALE TO MULTIPLE NODES Software Stack – Application

- Slurm: User job scheduling & management
- Pyxis: NVIDIA open-source plugin integrating Enroot with Slurm
- Base Command: NVIDIA services for GPU cluster management

SCALE TO MULTIPLE NODES Software Stack – System

• Enroot: NVIDIA open-source tool to convert traditional container/OS images into unprivileged sandboxes

Based on SuperPOD Design - Set Records on MLPerf v1.1 Training

NVIDIA.

NVIDIA SUPERPODS – EFFICIENT COMPUTE AT SCALE REPLICATING **REFERENCE DESIGN**

	ANCII			
		MBRIDO	E-1	
	POWERIN	NG THE FU	ITH AI	
	AstraZeneca	gsk	KINKS	
(स्राहित्स) (स्राहित्स)	Lindsay Edwards Head of AJ, Respiratory & Immunology	Steve Crossan VP, Al and Machine Learning	Sebastien Ourselin Professor of Healthcore Fact	
-	NHS 22.11	ONANOPORE		
	Nadine Hachach-Haram Clinical Innovation Lead	Resemary Sinclair Dokos VP, Product & Programme Management	DAU David Hogan	
/		^{07.07.2021}	vr. Enterprise EMEA	

fabric compute *

6

Infiniband Tiers Explanation Tier1: from nodes to edge; Tier2: from edge to core ; Tier3: from core to edge; Tier4: from edge to nodes. Mellanox docs diagram. Max traffic by tier 100% max current 75% - tier 1 100% 50% - tier 2 25% - tier 3 100% 0% - tier 4 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 Avg traffic by tier 100% max curre 75% - tier 1 1.49 50% 🕳 tier 2 25% 🕳 tier 3 tier 4 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 Traffic by switch level 100% max curr 75% - core avg 50% - leaf avg 25% spine avg 0% ----- core max 04:00 08:00 20:00 00:00 12:00 16:00 Writes by host 200 G8s maxcurrent - luna-0037 184.4 GBs 1.5 GBs — luna-0011 178.1 GBs 1.6 GBs 150 GBs luna-0001 175.2 GBs 0 MBs 1.6 GBs 171.6 GBs Iuna-0012 - luna-0008 171.5 GBs 1.6 GBs 100 G8s luna-0104 1.0 GBs 163.1 GBs 0 MBs luna-0045 162.7 GBs Iuna-0004 156.8 GBs 0 MBs 50 GBs - luna-0036 146.8 GBs 1.5 GBs 1.6 GBs - luna-0019 144.1 GBs - luna-0020 144.0 GBs 1.6 GBs 0 MBs

?

🖆 📮 🛛 Last 24 hours 👻 🔍 💭 🕄 🔞 🖛

Reads by host

MONITORING Infiniband, Power, Nodes, etc

t 3 hours 👻	Q	🙄 30s -
	max	avo-
	31.00	1.95
	19.00	0.81
	5.00	0.19
	0	0
100	0	0

0 0

max	avg+
19.00	0.81
17.00	0.49
6.00	0.25
6.00	0.20
5.00	0.19
6.00	0.13

	max	avg-	current
alloc	129	121	128
idle	58	8	0
drain	6	5	6
resv	5	4	5
maint	2	2	2
down	2	1	240

	avg-
-	1.559 hour
-	1.521 hour
_	1.494 hour
-	1.362 hour
-	1.208 hour
-	41 min

	total+
COMPLETED	191.00
- FAILED	47.00
- CANCELLED	28.00
- TIMEOUT	13.00

Ambient Temps

MONITORING Power, Thermals

ENERGY EFFICIENCY — MATCHING HIGH THROUGHPUT AND HIGH UTILIZATION

ENERGY EFFICIENCY – MATCHING HIGH THROUGHPUT AND HIGH UTILIZATION

GPU UTILIZATION

Blogs

DGX A100 SuperPOD https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/ https://blogs.nvidia.com/blog/2020/08/14/making-selene-pandemic-ai/ DDN Blog for DGX A100 Storage https://www.ddn.com/press-releases/ddn-a3i-nvidia-dgx-a100/ Kitchen Keynote summary <u>https://blogs.nvidia.com/blog/2020/05/14/gtc-2020-keynote/</u> Double Precision Tensor Cores https://blogs.nvidia.com/blog/2020/05/14/double-precision-tensor-cores/

Resources Links and other doc

DGX A100 Page https://www.nvidia.com/en-us/data-center/dgx-a100/

Want to join us?

If you are interested in exploring roles at NVIDIA:

https://www.nvidia.com/en-us/aboutnvidia/careers/

