Al-Systems

Distributed Deep
Learning (Part Il)
(294-162)

Amir Gholami & Joseph E. Gonzalez



Acknowledgments

Many slides from Shigang Li, Prof. Kurt Keutzer, Pallas Group




Agenda for Today

» 1:10-1:40: Final Lecture on Parallel Training
» 1:40-1:45: Project Proposal Format

» 2:00-2:45: PC Meeting Discussions

> 2:45-3:00: Break

» 3:00-4:00: Guest Lecture by Michael Houston



Objectives For Today

» Quick Review of Data & Pipeline Parallelism
» Spatial Parallelism

» Model Parallelism



Distributed Deep Learning:

Summary So Far




Parallel and distributed fraining

Data parallelism
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Synchronous Data Parallelism

1024

» Compute the entire model
on each processor

» Distribute the batch evenly
across each processor:

» 1024 batch distributed
over 16 PEs: 64 images
per GPU

» Communicate gradient
updates through allreduce




Generalization Gap Problem
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Larger batch sizes harm generalization
performance.
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Data Parallelism Summary

>

>

An efficient parallel fraining method where the comm time is
Independent of processors with ring allreduce

Very easy to implement. Only requires allreduce operation before
updating parameters

Very challenging to scale. Using large batch training is not an option
as it hurts generalization performance.

> Existing solutions often require a lot of tuning (outside of ResNet-50 on
ImageNet)

Does not work for large models such as GPT-3 which are too large to
fit in one GPU
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Pipeline Parallelism Bubble where
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Chimera: Bidirectional Pipeline

model replica0
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» Big idea: Replicate the model to the other processes so
that we can do forward pass in two directions

Forward and backward passes of replica0

Forward and backward passes of replical
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Pipeline Parallelism Summary

» More efficient for large scale training to thousands of processes
where point-to-point communication is much cheaper than

collective operations such as allreduce or all-gather

» Slightly more involved algorithm than data parallel method but with
the advantage of only requiring point to point communication

» Requires special handling of bubble that results in idle processes



Spatial Parallelism




Spatial Parallel Training

» The general idea is to break the input into smaller pieces
and distribute the work among different processors
» Need to exchange boundary points for spatial convolutions




Communication Complexity

Teomm(domain) = (a 1 BB X%A/ Xé k}; /2> Exchanging horizontal pixels
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' Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.
i Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018. !



Usetul for High Resolution Training

» Domain parallel scaling on V100 GPUs
» 3x3 Conv, Batch=32, Channel=64

Resolution GPUs Fwd. wall-clock  Bwd. wall-clock
128 x 128 1 2.56 ms (1.0x) 6.63 ms (1.0x)
2 1.52 ms (1.7x%) 3.50 ms (1.9x%)
4 1.23 ms (2.1 %) 2.33 ms (2.8%)
256 x 256 1 10.02ms (1.0x)  26.81 ms (1.0x)
2 5.34 ms (1.9%x) 11.79 ms (2.3 %)
4 3.11 ms (3.2x%) 6.96 ms (3.9%)
512512 1 45.15ms (1.0x) 126.11 ms (1.0x)
P 20.18 ms (2.2x)  60.15 ms (2.1x)
4 10.65 ms (4.2x) 26.76 ms (4.7x)

i Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
i Figure from: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.



Spatial Parallelism Summary
> A litfle harder to implement since you need to exchange
the boundary points

» Only effective for high resolution input data
> Limits the number of processors that can be effectively utilized

GPU2




Model Parallelism

AKA Operator Parallelism




Model Parallelism

Divide the model across machines and replicate the data.
» Supports large models and activations
» Requires communication within single evaluation

» How 1o best divide a model?

> Split across layers

» Only one set of layers active a time -
poor work balance

> This is basically pipeline parallelism
> Split individual layers

» which dimension@
> Weights or spatial 2 depends on operation

Machine |

Machine 3
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The AlexNet Architecture
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The Actual AlexNet Architecture

from the paper
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Training on Multiple GPUs

> Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

> 60M Parameters ~ 240 MB

» Need to cache activation maps for backpropagation
» Batch size = 128
> 128 * (227*227*3 + 55*55*96*2 + 96*27*27*2 + 256*27*27*2 + 256*13*13*2 +
13*13*384*2 + 256*13*13 + 6*6™256 + 4096 + 4096 + 1000) *4 Bytes ~
782MB Activations g

» That is assuming no ety v sz,f ggim
overhead and single ] S 5 '

precision values

1000
Softmax

4096 4096

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/



Model Parallelism: Comm Analysis

It helps to think of the operations in matrix form. Consider an FC layer

d B/P B/P
[ ]

Data Parallelism: Partition input across
different Processors (batch dimension)
d * d Py —> Py
W X Y
d
Model Parallelism: Partition weights °
across different Processes (W dimension) e
ol 8| = |
Py
W X Y
Let’s discuss the communication details, step by step el

communication



Comm Analysis: Forward Pass

d, 8 B
. ® ® o—————— o *— -9
d/P Pq d./P
P Po
% 0
¢ % Py > > Py
Py Ps
W X Ylocal Y
Requires All Gather
communication
L

* Requires an all gather communication so that Bd,
all processes get each others activation data Z B(P—1)

« Same cost as all reduce without the 2x factor i=1 P

* Ignoring latency term for notational simplicity



Backward Pass: Weights

PO, Pl d,/P

VY VW

» No communication needed as every processor only needs
the gradient of its own parameters

» This makes model parallelism very effective for cases where the
model size is large



Backward Pass: Inputs
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« Aggregating input gradient requires an
allreduce operation

V local
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Requires All Reduce
communication
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Comm Complexity Analysis

In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations

2. Allreduce operation for backpropagating activation

gradients
Bd
) vy (e

Teomm(model) = Z (
All Gather All Reduce




Model vs Data Parallelism®@

> When does it make sense 1o use Model vs Data

Parallelism®?
L L
Teomm (model) = Z (5(19 — 1)315") + 22 (5(P - 1)B]§l"')
d2
Teomm(data) = Z (B(P — 1)??)
1=1

» Model parallelism reduces the quadratic complexity of d;

> It is useful for layers with very large weights d,>> 1

> It makes sense to use an integrated/hybrid data and model parallelism



Model Parallelism Summary

>

>

Has better comm complexity for large FC layers than Data
parallel approach

Makes training large models feasible by breaking it into
smaller parts

However, requires blocking collective communication
during both forward pass (all gather), as well as backwards
pass (all reduce)

Slightly harder to implement than data/pipeline parallel



Infegrated Model and Data Parallelism
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General Hybrid Methods

For a general computational graph we need to decide on:
» How many processes to assign for DP
» Which axes to break the model: operator vs pipeline

» How to efficiently map the GPUs to the resulting execution
graph

> ...

For a general non-linear graph this leads to a combinatorically
large search space



Hybrid Methods: Alpo

(more communication) | [
* aka intra-op parallelism e

1 ]

= NVLink PCle — QPI

- Organize inter- and intra-op parallelism as a two-level hierarchical space

10-50 Gbps D D D D
Pipeline Parallelism* PCle Switches PCle Switches
(less communication) | , 1 l
*aka inter-op parallelism = (] 7
: i
Model Parallelism* swoebps | X | ] X

- Design algorithms to derive optimal plans at each level

i Slide: Courtesy of Lianming Zheng :
i Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." arXiv preprint arXiv:2201.12023 (2022). !

___________________________________________________________________________________________________________________________________________________________



Alpa: Architecture Overview

locally optimal solution
solved by DP

locally optimal solution |

solved by ILP

Compiler

Runtime

Slide: Courtesy of Lianming Zheng !
i Zheng, Lianmin, et al. "Alpa: Automating :
! Inter-and Intra-Operator Parallelism for -
1 Distributed Deep Learning." arXiv preprint |
1 arxiv:2201.12023 (2022).
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Intra-op Pass
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Project Proposals




