Al-Systems

Distributed Deep
Learning (Part Il)
(294-162)

Amir Gholami & Joseph E. Gonzalez

Acknowledgments

Many slides from Shigang Li, Prof. Kurt Keutzer, Pallas Group

Agenda for Today

» 1:10-1:40: Final Lecture on Parallel Training
» 1:40-1:45: Project Proposal Format

» 2:00-2:45: PC Meeting Discussions

> 2:45-3:00: Break

» 3:00-4:00: Guest Lecture by Michael Houston

Objectives For Today

» Quick Review of Data & Pipeline Parallelism
» Spatial Parallelism

» Model Parallelism

Distributed Deep Learning:

Summary So Far

Parallel and distributed fraining

Data parallelism

_— Pipeline parallelism Model parallelism

input input

L @l
| P1 P2

PO
P1
I E> E> E> Pros: Pros:
inout a. Make large model training feasible a. Make large model training
put b. No collective, only P2P feasible
P2 | LJ;> E> E>OC% Cons: Cons:
a. Bubbles in pipeline b. Communication for each
Pros: b. Removing bubbles leads to stale operator (or each layer)
a. Easy to realize weights
Cons:

a. Not work for large models
b. High allreduce overhead

Synchronous Data Parallelism

1024

» Compute the entire model
on each processor

» Distribute the batch evenly
across each processor:

» 1024 batch distributed
over 16 PEs: 64 images
per GPU

» Communicate gradient
updates through allreduce

Generalization Gap Problem

I
o
1

Larger batch sizes harm generalization
performance.

w
&)
T

w
(@)
T

N
o1
T

r
+
+
|
+

64 128 256 512 1k 2k 4k 8k 16k 32k 064k
mini-batch size

ImageNet top-1 validation error

N
o

Data Parallelism Summary

>

>

An efficient parallel fraining method where the comm time is
Independent of processors with ring allreduce

Very easy to implement. Only requires allreduce operation before
updating parameters

Very challenging to scale. Using large batch training is not an option
as it hurts generalization performance.

> Existing solutions often require a lot of tuning (outside of ResNet-50 on
ImageNet)

Does not work for large models such as GPT-3 which are too large to
fit in one GPU

Data parallelism . : .
nput Pipeline parallelism Model parallelism
1 input input
o]l B I3 [l® o(%)o of 1ol
input
' ;’ 1 PO P1 P2
P1 1 E> E> E>O% Pros: Pros:
) t a. Make large model training feasible a. Make large model training
nput b. No collective, only P2P feasible
P2 | E> E> E>% Cons: Cons:
a. Bubbles in pipeline b. Communication for each
Pros: b. Removing bubbles leads to stale operator (or each layer)
a. Easy to realize weights
Cons:
a. Not work for large models
b. High allreduce overhead

Pipeline Parallelism Bubble where

PO
P1
P2
P3

Time processes are idle
T e |1234 |1234
""""" Bubble

. ~ Forward and backward passes of
model replica0 for micro-batch x

Me Memory consumption for the weights

Ma Memory consumption for the activations

Chimera: Bidirectional Pipeline

model replica0

PO (stageO
P1 (stagel)
P2 (stage2

0

0o |1

0 0 + 1

P3\

model replical

0/0] 1

» /2 =2 micro-batches, where *

PO (stage3
i
P2 (stagel

2|2 3

-+

P3 (SEaged)
\

2| |3

« /2 =2 micro-batches, where ¢

o=4

-

0

1 0 |1

1 0 1

10 1

0|11

down pipeline

3

WIN
N

3 2| |3

up pipeline

» Big idea: Replicate the model to the other processes so
that we can do forward pass in two directions

Forward and backward passes of replica0

Forward and backward passes of replical

Summary
| ‘

Time |1234‘

PipeDream p
(SospP'19) P1

proportional

PipeDream-2BW P2

| Bubble

(iemu21) "3 Pipelg)ream PipeDream-2BW Me for Me for a 00
asynchronous apply gradients apply gradients PipeDream PipeDream-28w for both
with stale weights flush
[~ 0 ,1 ,2 |,3
Gpipe P1| 07,171,273
(Neurlps'19) P2 0,1 ,2 3 o B ¥proportional
P3 0717273 B toN
——
flush 1 gﬂg 4 1,‘2/’33 4
> PO 0 1] 1 [2]3] 3
5| GEMS p1 01 1 2 [3 3 i
2 .
E| (sc'20) P2 0 |1 1 2 [3 3]
g P3 0 [1 1 2 [3 3 n
c
&
% PO 0 The number of pipeline stages (depth) D=N=4
:_ DAPPLE p1 O The number of micro-batches in an iteration
3 ' ' Me Memory consumption for the weights
e P2
§ (ppopp’20) P3| proportional Ma Memory consumption for the activations
£ toD
f=
>

. Forward and backward passes of

POl 2 [3 3]0 1 model replica0 for micro-batch x

Chimera p1 0 3]1 |
,,,,, . Forward and backward passes of
P2 2 1 3 . model replical for micro-batch y

. p3[2] [3]0] 0 [1] 112] [3]

Pipeline Parallelism Summary

» More efficient for large scale training to thousands of processes
where point-to-point communication is much cheaper than

collective operations such as allreduce or all-gather

» Slightly more involved algorithm than data parallel method but with
the advantage of only requiring point to point communication

» Requires special handling of bubble that results in idle processes

Spatial Parallelism

Spatial Parallel Training

» The general idea is to break the input into smaller pieces
and distribute the work among different processors
» Need to exchange boundary points for spatial convolutions

Communication Complexity

Teomm(domain) = (a 1 BB X%A/ Xé k}; /2> Exchanging horizontal pixels

L4 L]

4 (a 4 BBY&/Y(@kﬁUﬂ) Exchanging vertical pixels

+2

M- 1= LM

)
|
@)

P —1 All reduce Cost
log(P) + B———|W;
<a og(P) + 5 P | |) (same as before)

' Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.
i Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018. !

Usetul for High Resolution Training

» Domain parallel scaling on V100 GPUs
» 3x3 Conv, Batch=32, Channel=64

Resolution GPUs Fwd. wall-clock Bwd. wall-clock
128 x 128 1 2.56 ms (1.0x) 6.63 ms (1.0x)
2 1.52 ms (1.7x%) 3.50 ms (1.9x%)
4 1.23 ms (2.1 %) 2.33 ms (2.8%)
256 x 256 1 10.02ms (1.0x) 26.81 ms (1.0x)
2 5.34 ms (1.9%x) 11.79 ms (2.3 %)
4 3.11 ms (3.2x%) 6.96 ms (3.9%)
512512 1 45.15ms (1.0x) 126.11 ms (1.0x)
P 20.18 ms (2.2x) 60.15 ms (2.1x)
4 10.65 ms (4.2x) 26.76 ms (4.7x)

i Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
i Figure from: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.

Spatial Parallelism Summary
> A litfle harder to implement since you need to exchange
the boundary points

» Only effective for high resolution input data
> Limits the number of processors that can be effectively utilized

GPU2

Model Parallelism

AKA Operator Parallelism

Model Parallelism

Divide the model across machines and replicate the data.
» Supports large models and activations
» Requires communication within single evaluation

» How 1o best divide a model?

> Split across layers

» Only one set of layers active a time -
poor work balance

> This is basically pipeline parallelism
> Split individual layers

» which dimension@
> Weights or spatial 2 depends on operation

Machine |

Machine 3

¢ duiydely

p BulydE

The AlexNet Architecture

\ R

a

._.
&
=
:/
1 Y B
i
77
I//
: U.I

D5

Stride 96

of 4

<

Max
pooling

13 13 13
57 = 13 N~ 13 - % 13 dense | [dense
3 3 =
384 384 256
Max

256 . LI ||
Max pooling 4976 4096
pooling

Without GPU Partifioning

4

100C

The Actual AlexNet Architecture

from the paper

N
SN
o)
N
o
o]

192 192 128

224 5

3[13 13 dense’| [densé
AN 2 A 1000
\ 192 192 128 Max L L
. 2088 7048
224\liStride Max 128 Max pooling

Uof 4 pooling pooling
3 48

Training on Multiple GPUs

> Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

> 60M Parameters ~ 240 MB

» Need to cache activation maps for backpropagation
» Batch size = 128
> 128 * (227*227*3 + 55*55*96*2 + 96*27*27*2 + 256*27*27*2 + 256*13*13*2 +
13*13*384*2 + 256*13*13 + 6*6™256 + 4096 + 4096 + 1000) *4 Bytes ~
782MB Activations g

» That is assuming no ety v sz,f ggim
overhead and single] S 5 '

precision values

1000
Softmax

4096 4096

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

Model Parallelism: Comm Analysis

It helps to think of the operations in matrix form. Consider an FC layer

d B/P B/P
[]

Data Parallelism: Partition input across
different Processors (batch dimension)
d * d Py —> Py
W X Y
d
Model Parallelism: Partition weights °
across different Processes (W dimension) e
ol 8| = |
Py
W X Y
Let’s discuss the communication details, step by step el

communication

Comm Analysis: Forward Pass

d, 8 B
. ® ® o—————— o *— -9
d/P Pq d./P
P Po
% 0
¢ % Py > > Py
Py Ps
W X Ylocal Y
Requires All Gather
communication
L

* Requires an all gather communication so that Bd,
all processes get each others activation data Z B(P—1)

« Same cost as all reduce without the 2x factor i=1 P

* Ignoring latency term for notational simplicity

Backward Pass: Weights

PO, Pl d,/P

VY VW

» No communication needed as every processor only needs
the gradient of its own parameters

» This makes model parallelism very effective for cases where the
model size is large

Backward Pass: Inputs

d; B
° ° ———— o
°
d,/P

P
% 0
P, d, P,

)
WT v,

« Aggregating input gradient requires an
allreduce operation

V local

zz(

Requires All Reduce
communication

")

Comm Complexity Analysis

In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the
activations

2. Allreduce operation for backpropagating activation

gradients
Bd
) vy (e

Teomm(model) = Z (
All Gather All Reduce

Model vs Data Parallelism®@

> When does it make sense 1o use Model vs Data

Parallelism®?
L L
Teomm (model) = Z (5(19 — 1)315") + 22 (5(P - 1)B]§l"')
d2
Teomm(data) = Z (B(P — 1)??)
1=1

» Model parallelism reduces the quadratic complexity of d;

> It is useful for layers with very large weights d,>> 1

> It makes sense to use an integrated/hybrid data and model parallelism

Model Parallelism Summary

>

>

Has better comm complexity for large FC layers than Data
parallel approach

Makes training large models feasible by breaking it into
smaller parts

However, requires blocking collective communication
during both forward pass (all gather), as well as backwards
pass (all reduce)

Slightly harder to implement than data/pipeline parallel

Infegrated Model and Data Parallelism
BP,, di B/P,
di/P, Pos di/P
For a linear graph we can 7o ﬁl — ‘ O
find the optimal hybrid Pt b 0| m | PP
method f_or analyzing the PR — W X
communication
complexity, coupled with .
. . s Low rank rocesses are
hardware utilization [1] pul e | |l — (o, B . oD indoxad:
orwra | e ||l Soozar)| metma P=P xP,
gsrlcifps XT
Vw Vy
dilPr B/P,
Low rank disg
oo N o matices o, P
" W e ||| enemer e
on Pr matmul
sized
VX oo VX intermediate WT VY

--

General Hybrid Methods

For a general computational graph we need to decide on:
» How many processes to assign for DP
» Which axes to break the model: operator vs pipeline

» How to efficiently map the GPUs to the resulting execution
graph

> ...

For a general non-linear graph this leads to a combinatorically
large search space

Hybrid Methods: Alpo

(more communication) | [
* aka intra-op parallelism e

1]

= NVLink PCle — QPI

- Organize inter- and intra-op parallelism as a two-level hierarchical space

10-50 Gbps D D D D
Pipeline Parallelism* PCle Switches PCle Switches
(less communication) | , 1 l
*aka inter-op parallelism = (] 7
: i
Model Parallelism* swoebps | X |] X

- Design algorithms to derive optimal plans at each level

i Slide: Courtesy of Lianming Zheng :
i Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." arXiv preprint arXiv:2201.12023 (2022). !

Alpa: Architecture Overview

locally optimal solution
solved by DP

locally optimal solution |

solved by ILP

Compiler

Runtime

Slide: Courtesy of Lianming Zheng !
i Zheng, Lianmin, et al. "Alpa: Automating :
! Inter-and Intra-Operator Parallelism for -
1 Distributed Deep Learning." arXiv preprint |
1 arxiv:2201.12023 (2022).

Inter-op Pass

Intra-op Pass

Runtime
Orchestration

ComputatiQnaI Graph

Devicle Cluster

L

Staée 1

4

Sharded
Stage 1

4

Mesh
Executable 1

Stage 2

4

Sharded
Stage 2

4

Mesh
Executable 2

Intra-op Berallelism /
4 A

Sta‘ge N

L

Sharded
Stage N

Mesh
Executable N

y

Device Mesh 1

Device Mesh 2

Device Mesh N

Worker Worker Worker | Devices ...
Worker Worker Worker | Devices ...

v
Inter-op Parallelism

Project Proposals

