
Amir Gholami & Joseph E. Gonzalez

AI-Systems

Distributed Deep 
Learning (Part II)
(294-162)



Acknowledgments
Many slides from Shigang Li, Prof. Kurt Keutzer, Pallas Group



Agenda for Today

Ø 1:10-1:40: Final Lecture on Parallel Training

Ø 1:40-1:45: Project Proposal Format

Ø 2:00-2:45: PC Meeting Discussions

Ø 2:45-3:00: Break

Ø 3:00-4:00: Guest Lecture by Michael Houston



Objectives For Today

Ø Quick Review of Data & Pipeline Parallelism

Ø Spatial Parallelism

Ø Model Parallelism



Distributed Deep Learning:
Summary So Far



Parallel and distributed training

Pros:
a.  Easy to realize

Cons:
a.  Not work for large models
b.  High allreduce overhead

Data parallelism

Pros:
a.  Make large model training feasible
b.  No collective, only P2P

Cons:
a.  Bubbles in pipeline
b.  Removing bubbles leads to stale 

weights

Pipeline parallelism
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Pros:
a.  Make large model training 

feasible

Cons:
b.  Communication for each 

operator (or each layer)
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Synchronous Data Parallelism
Ø Compute the entire model 

on each processor

Ø Distribute the batch evenly 
across each processor: 
Ø 1024 batch distributed 

over 16 PEs: 64 images 
per GPU

Ø Communicate gradient 
updates through allreduce
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Generalization Gap Problem

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining
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Larger batch sizes harm generalization 
performance.

Goyal, Priya, et al. "Accurate, large minibatch SGD: Training imagenet in 1 hour." arXiv preprint arXiv:1706.02677 (2017).



Data Parallelism Summary
Ø An efficient parallel training method where the comm time is 

independent of processors with ring allreduce

Ø Very easy to implement. Only requires allreduce operation before 
updating parameters

Ø Very challenging to scale. Using large batch training is not an option 
as it hurts generalization performance.
Ø Existing solutions often require a lot of tuning (outside of ResNet-50 on 

ImageNet)

Ø Does not work for large models such as GPT-3 which are too large to 
fit in one GPU



Parallel and distributed training

Pros:
a.  Easy to realize

Cons:
a.  Not work for large models
b.  High allreduce overhead

Data parallelism

Pros:
a.  Make large model training feasible
b.  No collective, only P2P

Cons:
a.  Bubbles in pipeline
b.  Removing bubbles leads to stale 

weights
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Pros:
a.  Make large model training 

feasible

Cons:
b.  Communication for each 

operator (or each layer)
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Pipeline Parallelism
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Chimera: Bidirectional Pipeline

Ø Big idea: Replicate the model to the other processes so 
that we can do forward pass in two directions
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�     The number of pipeline stages (depth)
�     The number of micro-batches in an iteration

Memory consumption for the weights
Memory consumption for the activations
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Pipeline Parallelism Summary
Ø More efficient for large scale training to thousands of processes 

where point-to-point communication is much cheaper than 
collective operations such as allreduce or all-gather

Ø Slightly more involved algorithm than data parallel method but with 
the advantage of only requiring point to point communication

Ø Requires special handling of bubble that results in idle processes



Spatial Parallelism



Spatial Parallel Training

Ø The general idea is to break the input into smaller pieces 
and distribute the work among different processors
Ø Need to exchange boundary points for spatial convolutions

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
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Communication Complexity

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.
Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks."  SPAA, 2018.
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Useful for High Resolution Training

Ø Domain parallel scaling on V100 GPUs
Ø 3x3 Conv, Batch=32, Channel=64

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
Figure from: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.



Spatial Parallelism Summary

Ø A little harder to implement since you need to exchange 
the boundary points

Ø Only effective for high resolution input data
Ø Limits the number of processors that can be effectively utilized

GPU1 GPU2

GPU3 GPU4



Model Parallelism
AKA Operator Parallelism



Divide the model across machines and replicate the data.

Ø Supports large models and activations

Ø Requires communication within single evaluation

Ø How to best divide a model?
Ø Split across layers 

Ø Only one set of layers active a time à
poor work balance

Ø This is basically pipeline parallelism
Ø Split individual layers 

Ø which dimension? 
Ø Weights or spatial à depends on operation

Model Parallelism
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.2 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

2In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3



The AlexNet Architecture

Without GPU Partitioning



The Actual AlexNet Architecture

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5
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Training on Multiple GPUs
Ø Limited by GPU memory using Nvidia GTX 580 (3GB RAM)

Ø 60M Parameters ~ 240 MB
Ø Need to cache activation maps for backpropagation

Ø Batch size = 128
Ø 128 * (227*227*3 + 55*55*96*2 + 96*27*27*2 + 256*27*27*2 + 256*13*13*2 + 

13*13*384*2  + 256*13*13 + 6*6*256 + 4096 + 4096 + 1000) *4 Bytes ~ 
782MB Activations

Ø That is assuming no 
overhead and single
precision values 

Ø Tuned splitting across GPUS
to balance communication 
and computation

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/



Model Parallelism: Comm Analysis
It helps to think of the operations in matrix form. Consider an FC layer

Data Parallelism: Partition input across 
different Processors (batch dimension)

Model Parallelism: Partition weights 
across different Processes (W dimension) 

Let’s discuss the communication details, step by step
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Comm Analysis: Forward Pass
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• Requires an all gather communication so that 
all processes get each others activation data

• Same cost as all reduce without the 2x factor

* Ignoring latency term for notational simplicity
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Backward Pass: Weights

P0, P1
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Ø No communication needed as every processor only needs 
the gradient of its own parameters
Ø This makes model parallelism very effective for cases where the 

model size is large



Backward Pass: Inputs
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• Aggregating input gradient requires an 
allreduce operation
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Comm Complexity Analysis
In Model Parallelism we need two forms of communication:

1. All Gather operation so that all processors get all the 
activations

2. All reduce operation for backpropagating activation 
gradients

All Gather All Reduce
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Model vs Data Parallelism?
Ø When does it make sense to use Model vs Data 

Parallelism?
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Ø Model parallelism reduces the quadratic complexity of di

Ø It is useful for layers with very large weights di >> 1

Ø It makes sense to use an integrated/hybrid data and model parallelism

Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks."  SPAA, 2018.



Model Parallelism Summary

Ø Has better comm complexity for large FC layers than Data 
parallel approach

Ø Makes training large models feasible by breaking it into 
smaller parts

Ø However, requires blocking collective communication 
during both forward pass (all gather), as well as backwards 
pass (all reduce)

Ø Slightly harder to implement than data/pipeline parallel



Integrated Model and Data Parallelism
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[1] Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks."  SPAA, 2018.

For a linear graph we can 
find the optimal hybrid 
method for analyzing the 
communication 
complexity, coupled with 
hardware utilization [1]



General Hybrid Methods

For a general computational graph we need to decide on:

Ø How many processes to assign for DP

Ø Which axes to break the model: operator vs pipeline

Ø How to efficiently map the GPUs to the resulting execution 
graph

Ø …

For a general non-linear graph this leads to a combinatorically 
large search space



Hybrid Methods: Alpa

- Organize inter- and intra-op parallelism as a two-level hierarchical space

- Design algorithms to derive optimal plans at each level

Pipeline Parallelism*
(less communication)
*aka inter-op parallelism

Model Parallelism*
(more communication)
* aka intra-op parallelism

400 Gbps

10-50 Gbps

Slide: Courtesy of Lianming Zheng
Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." arXiv preprint arXiv:2201.12023 (2022).



Alpa: Architecture Overview
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Slide: Courtesy of Lianming Zheng
Zheng, Lianmin, et al. "Alpa: Automating 
Inter-and Intra-Operator Parallelism for 
Distributed Deep Learning." arXiv preprint 
arXiv:2201.12023 (2022).
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