Al-Systems Distributed Deep Learning (Part II) (294-162)

Amir Gholami & Joseph E. Gonzalez

Acknowledgments

Many slides from Shigang Li, Prof. Kurt Keutzer, Pallas Group

Agenda for Today

- > 1:10-1:40: Final Lecture on Parallel Training
- > 1:40-1:45: Project Proposal Format
- > 2:00-2:45: PC Meeting Discussions
- ➤ 2:45-3:00: Break
- ➤ 3:00-4:00: Guest Lecture by Michael Houston

Objectives For Today

- > Quick Review of Data & Pipeline Parallelism
- Spatial Parallelism
- Model Parallelism

Distributed Deep Learning: Summary So Far

Parallel and distributed training

Cons:

- a. Not work for large models
- b. High allreduce overhead

Slide: Courtesy of Shigang Li

Pipeline parallelism

Pros:

- a. Make large model training feasible
- b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale weights

Model parallelism

Pros:

a. Make large model training feasible

Cons:

b. Communication for each operator (or each layer)

Synchronous Data Parallelism

- Compute the entire model on each processor
- Distribute the batch evenly across each processor:
 - 1024 batch distributed over 16 PEs: 64 images per GPU
- Communicate gradient updates through allreduce

$$w^{1} = w^{0} - \frac{\alpha}{B} \sum_{i=1}^{B} \frac{\partial \mathcal{J}(w^{0})}{\partial w}$$

Generalization Gap Problem

Data Parallelism Summary

- An efficient parallel training method where the comm time is independent of processors with ring allreduce
- Very easy to implement. Only requires all reduce operation before updating parameters
- Very challenging to scale. Using large batch training is not an option as it hurts generalization performance.
 - Existing solutions often require a lot of tuning (outside of ResNet-50 on ImageNet)
- Does not work for large models such as GPT-3 which are too large to fit in one GPU

Parallel and distributed training

a. Easy to realize

Cons:

- a. Not work for large models
- b. High allreduce overhead

Slide: Courtesy of Shigang Li

Pipeline parallelism

Pros:

- a. Make large model training feasible
- b. No collective, only P2P

Cons:

a. Bubbles in pipeline

b. Removing bubbles leads to stale weights

Model parallelism

Pros:

a. Make large model training feasible

Cons:

b. Communication for each operator (or each layer)

Chimera: Bidirectional Pipeline

Big idea: Replicate the model to the other processes so that we can do forward pass in two directions

Slide: Courtesy of Shigang Li

Slide: Courtesy of Shigang Li

Pipeline Parallelism Summary

- More efficient for large scale training to thousands of processes where point-to-point communication is much cheaper than collective operations such as allreduce or all-gather
- Slightly more involved algorithm than data parallel method but with the advantage of only requiring point to point communication
- Requires special handling of bubble that results in idle processes

Spatial Parallelism

Spatial Parallel Training

- The general idea is to break the input into smaller pieces and distribute the work among different processors
 - Need to exchange boundary points for spatial convolutions

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018

Communication Complexity

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018.	
Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018.	

Useful for High Resolution Training

Domain parallel scaling on V100 GPUs

➢ 3x3 Conv, Batch=32, Channel=64

Resolution	GPUs	Fwd. wall-clock	Bwd. wall-clock
128×128	1	2.56 ms $(1.0 \times)$	6.63 ms (1.0×)
	2	$1.52 \text{ ms} (1.7 \times)$	3.50 ms (1.9×)
	4	1.23 ms (2.1 \times)	2.33 ms (2.8 \times)
256 imes 256	1	$10.02 \text{ ms} (1.0 \times)$	26.81 ms $(1.0 \times)$
	2	5.34 ms (1.9×)	11.79 ms ($2.3 \times$)
	4	3.11 ms $(3.2 \times)$	6.96 ms (3.9 ×)
512×512	1	45.15 ms (1.0×)	126.11 ms (1.0×)
	2	20.18 ms (2.2×)	60.15 ms (2.1×)
	4	10.65 ms (4.2×)	26.76 ms (4.7×)

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018 Figure from: Dumoulin, V., Visin, F. A guide to convolution arithmetic for deep learning. *arXiv:1603.07285*, 2016.

Spatial Parallelism Summary

- A little harder to implement since you need to exchange the boundary points
- > Only effective for high resolution input data
 - Limits the number of processors that can be effectively utilized

Model Parallelism

AKA Operator Parallelism

Model Parallelism

Divide the model across machines and replicate the data.

- Supports large models and activations
- Requires communication within single evaluation
- How to best divide a model?
 - Split across layers
 - ➢ Only one set of layers active a time → poor work balance
 - > This is basically pipeline parallelism
 - Split individual layers
 - which dimension?
 - \succ Weights or spatial \rightarrow depends on operation

The AlexNet Architecture

The Actual AlexNet Architecture

from the paper

Training on Multiple GPUs

- Limited by GPU memory using Nvidia GTX 580 (3GB RAM)
 - > 60M Parameters ~ 240 MB
 - Need to cache activation maps for backpropagation
 - ➢ Batch size = 128
 - 128 * (227*227*3 + 55*55*96*2 + 96*27*27*2 + 256*27*27*2 + 256*13*13*2 + 13*13*384*2 + 256*13*13 + 6*6*256 + 4096 + 4096 + 1000) *4 Bytes ~ 782MB Activations
 - That is assuming no overhead and single precision values

3x3.

stride=2

(13-3)/2 +

9216

FC

4096

FC

4096

1000 Softmax

3x3,pad=1

256 kernels

(13+2*1-3)/

+1 = 13

Tuned splitting across GPUS to balance communication and computation

Image from https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

3x3,pad=1

384 kernels

(13+2*1-3)/

+1 = 13

Model Parallelism: Comm Analysis

It helps to think of the operations in matrix form. Consider an FC layer

Data Parallelism: Partition input across different Processors (batch dimension)

Model Parallelism: Partition weights across different Processes (W dimension)

Let's discuss the communication details, step by step

Comm Analysis: Forward Pass

- Same cost as all reduce without the 2x factor
- * Ignoring latency term for notational simplicity

Backward Pass: Weights

- No communication needed as every processor only needs the gradient of its own parameters
 - This makes model parallelism very effective for cases where the model size is large

allreduce operation

Comm Complexity Analysis

In Model Parallelism we need two forms of communication:

- 1. All Gather operation so that all processors get all the activations
- 2. All reduce operation for backpropagating activation gradients

$$T_{comm}(model) = \sum_{i=1}^{L} \left(\beta(P-1) \frac{Bd_i}{P} \right) + 2 \sum_{i=2}^{L} \left(\beta(P-1) \frac{Bd_i}{P} \right)$$

All Gather All Reduce

Model vs Data Parallelism?

When does it make sense to use Model vs Data Parallelism?

$$T_{comm}(model) = \sum_{i=1}^{L} \left(\beta(P-1) \frac{Bd_i}{P} \right) + 2 \sum_{i=2}^{L} \left(\beta(P-1) \frac{Bd_i}{P} \right)$$
$$T_{comm}(data) = \sum_{i=1}^{L} \left(\beta(P-1) \frac{d_i^2}{P} \right)$$

- \blacktriangleright Model parallelism reduces the quadratic complexity of d_i
 - > It is useful for layers with very large weights $d_i >> 1$

> It makes sense to use an integrated/hybrid data and model parallelism

Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018.

Model Parallelism Summary

- Has better comm complexity for large FC layers than Data parallel approach
- Makes training large models feasible by breaking it into smaller parts
- However, requires blocking collective communication during both forward pass (all gather), as well as backwards pass (all reduce)
- Slightly harder to implement than data/pipeline parallel

Integrated Model and Data Parallelism

For a linear graph we can find the optimal hybrid method for analyzing the communication complexity, coupled with hardware utilization [1]

[1] Gholami, Amir, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. "Integrated model, batch, and domain parallelism in training neural networks." SPAA, 2018.

General Hybrid Methods

For a general computational graph we need to decide on:

- ➤ How many processes to assign for DP
- > Which axes to break the model: operator vs pipeline
- How to efficiently map the GPUs to the resulting execution graph

▶ ...

For a general non-linear graph this leads to a combinatorically large search space

Hybrid Methods: Alpa

- Organize inter- and intra-op parallelism as a two-level hierarchical space
- Design algorithms to derive optimal plans at each level

Alpa: Architecture Overview

Project Proposals