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Objectives For Today

Ø Historical Evolution of Machine Learning Frameworks

Ø Declarative (Lazy) vs Imperative (Eager) DSLs

Ø Automatic Differentiation

Ø This weeks reading



Historical Context



Early ML / Stats Languages
Ø S Data Programming Languages

Ø Developed in 1976 as Bell Labs by John Chambers
Ø Replaced Fortran by providing higher level APIs, graphics
Ø Developed formula syntax for describing models
Ø Eventually replaced by R …

Ø R open-source implementation of S (S-Plus)
Ø Developed in 1990’s at University of Auckland 

Ø Ross Ihaka, Robert Gentleman 
Ø Like S/S-Plus à Linear algebra abstractions 
Ø Rich set of libraries for statistical analysis 
Ø Still widely used



Ø Matlab (Matrix Laboratory) – Numerical Computing Sys.
Ø Developed in 1970s at the University of New Mexico by Cleve Moler
Ø Designed to simplify access to LINPACK and EISPACK
Ø Reasonable integration with C/Fortran
Ø Rich graphical interface with support for graphical programming

Ø Simulink
Ø Expensive à Octave limited open-source version 
Ø Popular in applied math, engineering, and controls community
Ø Extremely popular in the machine learning community

Ø We would joke that ML people only knew how to program Matlab

Ø and then it all changed …



Rise of the Python Eco-System
Ø Development of %pylab

Ø iPython (2001) + SciPy (2001) + Matplotlib (2003) + NumPy (2006)
Ø Functions /APIs were like Matlab so easy to transition
Ø Freeeeeee!  

Ø Scikit-learn – basic ML algorithms and models (2007)
Ø Started as Google summer of code project à developed by INRIA
Ø Wide range of standard machine learning techniques

Ø ~2012 large fraction of ML community Matlab à Python
Ø Why?

Ø Development remained focused on algorithms libraries



Machine Learning Libraries 
Ø LIBLINEAR/LIBSVM (2008) – fast algorithms for fitting linear models 

and kernelized SVMs 
Ø Developed at National Taiwan University for (still used in Sklearn)

Ø Vowpal Wabbit (2010?) – out-of-core learning for generalized linear 
models and others
Ø Developed by John Langford while at Yahoo! 
Ø Popular for high-dimensional features

Ø Weka (Java version 1997) – Collection of ML algorithms for Java 
Ø Developed at the University of Waikato in New Zealand
Ø Provided tools for visualizing and analyzing data

Ø Xgboost (2014) – distributed boosted decision trees 
Ø Developed by Tianqi Chen at University of Washington

Ø Many more …



Distributed Machine Learning Frameworks
Ø Mahout (2009) – ML algorithms on Hadoop

Ø Early distributed ML library with “recommender algorithms”
Ø Unable to leverage memory caching 

Ø GraphLab (2010) – Framework for graph structured algorithms
Ø Contained library of algs. (e.g., Gibbs Sampling, LoopyBP, …)
Ø Developed new abstractions for distributed graph algs.

Ø Spark mllib / SparkML (2014) – ML algorithms for Spark
Ø Leverages memory caching 
Ø Benefits from work on GraphLab/Sklearn/SystemML



Languages vs Algorithm Libraries

Ø Languages provided support for mathematical operations
Ø User still implemented new models and algorithms using fundamental 

linear algebra primitives

Ø Libraries of Algorithms provided individual learning techniques 
Ø Often specialized to model/technique (fast and easy-to-use)

Ø Need something in the middle! 

Languages
(R/Matlab)

Libraries of
Algorithms

Generality Simplicity

Pipeline
(embedded)

DSLs



Embedded Domain Specific Languages
Ø Domain specific languages (DSLs) provide specialized 

functionality for a given task
Ø Limited functionality à simplicity and optimization
Ø Example: SQL à Specialized for data manipulation

Ø Embedded DSLs are libraries or language extensions within 
a general-purpose language tailored to a specific task
Ø Combine benefits of DSL and general languages
Ø Example: linear algebra libraries

Ø Embedded DSLs have played a significant role in ML
Ø Linear Algebra à Pipelines à Differentiable Programs



Machine Learning Pipelines
Ø Scikit Learn Pipelines (2011)

Ø Describes composition of feature transformations and models
Ø Enables end-to-end training and standardized prediction

Ø Spark ML Pipelines (Similar to SkLearn)



SystemML (VLDB’16)
Ø Developed at IBM

Ø Domain specific language for 
describing ML algorithms
Ø Python/R like but not embedded
Ø Optimizer and runtime to execute 

on Apache Spark

Ø Explored range of optimizations
Ø Data repartitioning
Ø Caching
Ø Distributed matrix representations



Keystone ML (ICDE’17)

Ø Developed in AMPLab@Berkeley

Ø Pipelines of ML algorithms and 
optimization on top of Spark
Ø Embedded Scala DSL
Ø Outperformed SystemML

Ø Cost based optimize to select 
best version of learning algorithm 
based on inputs
Ø Example: QR vs L-BFGS



Languages vs Algorithm Libraries

Ø Increased focus on deep learning à
empirical risk minimization for complex differentiable models

Ø Research shifts from algorithm design to model design

Ø Deep Learning Frameworks:Theano (2008), Caffe (2014), 
MXNet (2015), TensorFlow (2015), PyTorch (2016)
Ø Combine automatic differentiation with hardware acceleration
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Review of 
Automatic Differentiation



Automatic Differentiation

Ø Method of computing numeric derivatives of a program
by tracking the forward execution of that program

Ø Other methods for computing derivatives
Ø Manual implementation: the standard method in deep learning 

prior to these frameworks
Ø laborious and error prone!

Ø Numerical differentiation: using finite differences
Ø Easy, costly and sensitive to numerical precision 

Ø Symbolic differentiation: using computer algebraic systems
Ø Expressions can grow exponentially



Illustration from 
“Automatic 
Differentiation in 
Machine Learning: 
a Survey”



Illustration from 
“Automatic 
Differentiation in 
Machine Learning: 
a Survey”





How I used to do this as a 
graduate student (2010).

How I would cheat using 
Mathematica.



Automatic differentiation 
operates on a program to 
generate a program that 
computes the derivative 
efficiently and accurately.



Key Ideas in Automatic Differentiation 
Ø Leverage Chain Rule to reason about function composition

Ø Two modes of automatic differentiation
Ø Forward differentiation: computes derivative during execution 

Ø efficient for single derivative with multiple outputs
Ø Backward differentiation (back-propagation): computes derivative 

(gradient) by reverse evaluation of the computation graph
Ø Efficient for multiple derivative (gradient) calculation + Requires caching

@

@x
f (g (x)) = ḟ (g (x))

@

@x
g (x)

<latexit sha1_base64="ti1of3mF8Ig/W5y54oBlBl+uvtw="></latexit>



Forward Differentiation (Example)
f (x1, x2) = ln (x1) + x1x2 � sin (x2)

<latexit sha1_base64="PZVpmN2oapJJY1gNa6woxzFC5jI=">AAACNnicbVDLSgMxFM34rPVVdekmWARFLTNV0I1QdONGqGBV6JQhk2ba0ExmSO5Iy9CvcuN3uOvGhSJu/QQzfYivA4HDOedyc48fC67BtgfW1PTM7Nx8biG/uLS8slpYW7/RUaIoq9FIROrOJ5oJLlkNOAh2FytGQl+wW79znvm390xpHslr6MWsEZKW5AGnBIzkFS4DV7AAdrqes4+7XtlVvNWGXXyKXSG/rIm6ZyJOFsMH2NX8KzAZ8wpFu2QPgf8SZ0yKaIyqV3hymxFNQiaBCqJ13bFjaKREAaeC9fNuollMaIe0WN1QSUKmG+nw7D7eNkoTB5EyTwIeqt8nUhJq3Qt9kwwJtPVvLxP/8+oJBCeNlMs4ASbpaFGQCAwRzjrETa4YBdEzhFDFzV8xbRNFKJim86YE5/fJf8lNueQclspXR8XK2biOHNpEW2gHOegYVdAFqqIaougBDdALerUerWfrzXofRaes8cwG+gHr4xN10ald</latexit>

@v5
@x1

<latexit sha1_base64="8L7kLaeyGSWrkFIa5oIcHRvBx2w=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCXlOVZiYSwSfUhNFDmu01p1nMh2KqooOwu/wsIAQqz8ABt/g9NGAlqOZOn4nHuvfY8fMyqVZX0ZpZXVtfWN8mZla3tnd8/cP+jIKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I1x9f5353QoSkEb9T05i4IRpyGlCMlJY8s+oEAuHUiZFQFDE48c6zn9u9Z2cVz6xZdWsGuEzsgtRAgZZnfjqDCCch4QozJGXftmLlpvlMzEhWcRJJYoTHaEj6mnIUEumms10yeKyVAQwioQ9XcKb+7khRKOU09HVliNRILnq5+J/XT1Rw5aaUx4kiHM8fChIGVQTzYOCACoIVm2qCsKD6rxCPkA5H6fjyEOzFlZdJp1G3T+uN27Na86KIowyOQBWcABtcgia4AS3QBhg8gCfwAl6NR+PZeDPe56Ulo+g5BH9gfHwDwNGazQ==</latexit>

Goal is to compute: x1 = 2andx2 = 5
<latexit sha1_base64="dLHmN5nL8ujBgfqY0TCdFwqc3f0=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYSNiNz0YI2FhGMA/ILsvsZJIMmZ1dZu5KwpLWxl+xsVDE1j+w82+cTVJo4oELZ865l7n3BLHgGmz728otLa+sruXXCxubW9s7xd29ho4SRVmdRiJSrYBoJrhkdeAgWCtWjISBYM1gcJP5zQemNI/kPYxi5oWkJ3mXUwJG8ot46Dv4Glewe4JdYENIieyMs9fQrxjj3C+W7LI9AV4kzoyU0Aw1v/jldiKahEwCFUTrtmPH4KVEAaeCjQtuollM6ID0WNtQSUKmvXRyyRgfGaWDu5EyJQFP1N8TKQm1HoWB6QwJ9PW8l4n/ee0EuldeymWcAJN0+lE3ERginMWCO1wxCmJkCKGKm10x7RNFKJjwCiYEZ/7kRdKolJ3TcuXurFS9mMWRRwfoEB0jB12iKrpFNVRHFD2iZ/SK3qwn68V6tz6mrTlrNrOP/sD6/AHQxZcx</latexit>

@



Forward Differentiation (Example)
f (x1, x2) = ln (x1) + x1x2 � sin (x2)

<latexit sha1_base64="PZVpmN2oapJJY1gNa6woxzFC5jI="></latexit>

x1 ln v1

* v2

x2 sin v3

+ -v4 v5

2

5

ln(2)

10

sin(5)

ln(2) + 10 Ln(2) + 10 – sin(5)@x1

@x1
= 1

<latexit sha1_base64="e/fJj6C04kkG2sldC0Y38pTBzU4=">AAACDHicdVDLSgMxFM34rPVVdekmWARXw8x0aOtCKLhxWcE+oDOUTJppQzOZIcmIZegHuPFX3LhQxK0f4M6/MdNWsKIHAifn3HuTe4KEUaks69NYWV1b39gsbBW3d3b39ksHh20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBOPL3O/cEiFpzG/UJCF+hIachhQjpaV+qeyFAuHMS5BQFDF417eny7cLW1dZ5nm96rhVaJmWVbMdOydOza240NZKjjJYoNkvfXiDGKcR4QozJGXPthLlZ/lQzMi06KWSJAiP0ZD0NOUoItLPZstM4alWBjCMhT5cwZn6syNDkZSTKNCVEVIj+dvLxb+8XqrCup9RnqSKcDx/KEwZVDHMk4EDKghWbKIJwoLqv0I8QjodpfMr6hC+N4X/k7Zj2hXTuXbLjeoijgI4BifgDNigBhrgCjRBC2BwDx7BM3gxHown49V4m5euGIueI7AE4/0L56ebew==</latexit>

@x2

@x1
= 0

<latexit sha1_base64="TC08Btakt0IGXhpN0PdmK9xW7Ts=">AAACDHicdVDLSgMxFM34rPVVdekmWARXw8x0aOtCKLhxWcE+oB1KJs20oZnMkGTEMswHuPFX3LhQxK0f4M6/MdNWqKIHAifn3HuTe/yYUaks69NYWV1b39gsbBW3d3b39ksHh20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+JPL3O/cEiFpxG/UNCZeiEacBhQjpaVBqdwPBMJpP0ZCUcTg3cDJlm92dmHpKss8r1cdtwot07JqtmPnxKm5FRfaWslRBgs0B6WP/jDCSUi4wgxJ2bOtWHlpPhQzkhX7iSQxwhM0Ij1NOQqJ9NLZMhk81coQBpHQhys4U5c7UhRKOQ19XRkiNZa/vVz8y+slKqh7KeVxogjH84eChEEVwTwZOKSCYMWmmiAsqP4rxGOk01E6v6IO4XtT+D9pO6ZdMZ1rt9yoLuIogGNwAs6ADWqgAa5AE7QABvfgETyDF+PBeDJejbd56Yqx6DkCP2C8fwHnuJt7</latexit>

@v1
@x1

=
1

v1

@x1

@x1
=

1

2
<latexit sha1_base64="qsGOsB3T0QLL7TsBNAbGoT6P0T0="></latexit>

@v2
@x1

= x1
@x2

@x1
+ x2

@x1

@x1
= 5

<latexit sha1_base64="JA3d0IH/6AtRjaydeoWV6B+wSR0="></latexit>

@v3
@x1

= cos(5)
@x2

@x1
= 0

<latexit sha1_base64="OHDhvQutOKZ3gInMdj6kJLSdGZU="></latexit>

@v5
@x1

=
@v4
@x1

+
@v3
@x1

= 5 +
1

2
<latexit sha1_base64="4ZGeHHKxsrTvT5GtK0S1kxWXu1M="></latexit>

Ø Notice that only last results
need to be stored 

Ø Would need to repeat for x2

@v5
@x1

<latexit sha1_base64="8L7kLaeyGSWrkFIa5oIcHRvBx2w=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCXlOVZiYSwSfUhNFDmu01p1nMh2KqooOwu/wsIAQqz8ABt/g9NGAlqOZOn4nHuvfY8fMyqVZX0ZpZXVtfWN8mZla3tnd8/cP+jIKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I1x9f5353QoSkEb9T05i4IRpyGlCMlJY8s+oEAuHUiZFQFDE48c6zn9u9Z2cVz6xZdWsGuEzsgtRAgZZnfjqDCCch4QozJGXftmLlpvlMzEhWcRJJYoTHaEj6mnIUEumms10yeKyVAQwioQ9XcKb+7khRKOU09HVliNRILnq5+J/XT1Rw5aaUx4kiHM8fChIGVQTzYOCACoIVm2qCsKD6rxCPkA5H6fjyEOzFlZdJp1G3T+uN27Na86KIowyOQBWcABtcgia4AS3QBhg8gCfwAl6NR+PZeDPe56Ulo+g5BH9gfHwDwNGazQ==</latexit>

Goal is to compute: x1 = 2andx2 = 5
<latexit sha1_base64="dLHmN5nL8ujBgfqY0TCdFwqc3f0=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYSNiNz0YI2FhGMA/ILsvsZJIMmZ1dZu5KwpLWxl+xsVDE1j+w82+cTVJo4oELZ865l7n3BLHgGmz728otLa+sruXXCxubW9s7xd29ho4SRVmdRiJSrYBoJrhkdeAgWCtWjISBYM1gcJP5zQemNI/kPYxi5oWkJ3mXUwJG8ot46Dv4Glewe4JdYENIieyMs9fQrxjj3C+W7LI9AV4kzoyU0Aw1v/jldiKahEwCFUTrtmPH4KVEAaeCjQtuollM6ID0WNtQSUKmvXRyyRgfGaWDu5EyJQFP1N8TKQm1HoWB6QwJ9PW8l4n/ee0EuldeymWcAJN0+lE3ERginMWCO1wxCmJkCKGKm10x7RNFKJjwCiYEZ/7kRdKolJ3TcuXurFS9mMWRRwfoEB0jB12iKrpFNVRHFD2iZ/SK3qwn68V6tz6mrTlrNrOP/sD6/AHQxZcx</latexit>

@

@v4
@x1

=
@v1
@x1

+
@v2
@x1

=
1

2
+ 5

<latexit sha1_base64="g4pYaLKQcsU3b9KvHgwzmVoAxKk="></latexit>



Backward (Reverse) Differentiation
f (x1, x2) = ln (x1) + x1x2 � sin (x2)

<latexit sha1_base64="PZVpmN2oapJJY1gNa6woxzFC5jI="></latexit>

x1 ln v1

* v2

x2 sin v3

+ -v4 v5

2

5

ln(2)

10

sin(5)

ln(2) + 10 Ln(2) + 10 – sin(5)

v̄5 =
@v5
@v5

= 1
<latexit sha1_base64="4Ub1Pn7ZKsU2QQRdpIHGcSDhFPo="></latexit>

v̄4 =
@v5
@v4

v̄5 = 1
<latexit sha1_base64="67Sq5CGGs1VU73Pkq+W1leGVpvQ="></latexit>

v̄3 =
@v5
@v3

v̄5 = �1 ⇤ 1
<latexit sha1_base64="QfppGDs3TXji5OH1l7osulvfyio="></latexit>

v̄1 =
@v4
@v1

v̄4 = 1
<latexit sha1_base64="cq8PjALA5rQWAHWNUTjBaaNLJJE="></latexit>

v̄2 =
@v4
@v2

v̄4 = 1
<latexit sha1_base64="9xB9xUSU8ollXTDvNGrRqrHYxkQ=">AAACJHicdVDLSgMxFM3UV62vqks3wSK4KpOx9IEIBTcuK9gHdMqQSTNtaOZBkimUYT7Gjb/ixoUPXLjxW8y0FarohcC555zLzT1uxJlUpvlh5NbWNza38tuFnd29/YPi4VFHhrEgtE1CHoqeiyXlLKBtxRSnvUhQ7Lucdt3JdaZ3p1RIFgZ3ahbRgY9HAfMYwUpTTvHSdrFIpqljwStoewKTxI6wUAxzOHUq6Wpnpd/mijajglMsmWXTNBFCMAOoVjU1aDTqFqpDlEm6SmBZLaf4ag9DEvs0UIRjKfvIjNQgyRYQTtOCHUsaYTLBI9rXMMA+lYNkfmQKzzQzhF4o9AsUnLOrEwn2pZz5rnb6WI3lby0j/9L6sfLqg4QFUaxoQBaLvJhDFcIsMThkghLFZxpgIpj+KyRjrJNSOtcshO9L4f+gY5XRRdm6rZSa1WUceXACTsE5QKAGmuAGtEAbEHAPHsEzeDEejCfjzXhfWHPGcuYY/Cjj8wvnPqRI</latexit>

x̄1 =
@v1
@x1

v̄1 +
@v2
@x1

v̄2
<latexit sha1_base64="DrFWDgwEA7PScGEUN3vfOhV2pyg="></latexit>

=
1

2
⇤ 1 + 5 ⇤ 1 = 5.5

<latexit sha1_base64="IK8C+FE2nt/EO5Q+yDq+ojdBnHE=">AAACCXicdVDJSgNBEO1xjXGLevRSGASJEKaj2Q5CwIvHCGaBJISeTk/SpGehu0cIQ65e/BUvHhTx6h9482/sSSKo6IOCx3tVVNVzQsGVtu0Pa2l5ZXVtPbWR3tza3tnN7O03VRBJyho0EIFsO0QxwX3W0FwL1g4lI54jWMsZXyZ+65ZJxQP/Rk9C1vPI0Ocup0QbqZ8BuICuKwmN8TQuTHMYTqEIOcBGh2K+mO5nsnbetm2MMSQEl0u2IdVqpYArgBPLIIsWqPcz791BQCOP+ZoKolQH26HuxURqTgWbpruRYiGhYzJkHUN94jHVi2efTOHYKANwA2nK1zBTv0/ExFNq4jmm0yN6pH57ifiX14m0W+nF3A8jzXw6X+RGAnQASSww4JJRLSaGECq5uRXoiJhctAkvCeHrU/ifNAt5fJYvXJ9na6VFHCl0iI7QCcKojGroCtVRA1F0hx7QE3q27q1H68V6nbcuWYuZA/QD1tsnhN2Vtg==</latexit>

x̄2 =
@v2
@x2

v̄2 +
@v3
@x2

v̄3
<latexit sha1_base64="MWu4sXWMsJhm11tmHU0UDqJBe/U="></latexit>

= 2 ⇤ 1 + cos(5) ⇤ �1 ⇡ 1.716
<latexit sha1_base64="qFu6IRj2w4Grp1ifB8eH7TpJ9tU="></latexit>

Goal is to compute: x1 = 2andx2 = 5
<latexit sha1_base64="dLHmN5nL8ujBgfqY0TCdFwqc3f0=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYSNiNz0YI2FhGMA/ILsvsZJIMmZ1dZu5KwpLWxl+xsVDE1j+w82+cTVJo4oELZ865l7n3BLHgGmz728otLa+sruXXCxubW9s7xd29ho4SRVmdRiJSrYBoJrhkdeAgWCtWjISBYM1gcJP5zQemNI/kPYxi5oWkJ3mXUwJG8ot46Dv4Glewe4JdYENIieyMs9fQrxjj3C+W7LI9AV4kzoyU0Aw1v/jldiKahEwCFUTrtmPH4KVEAaeCjQtuollM6ID0WNtQSUKmvXRyyRgfGaWDu5EyJQFP1N8TKQm1HoWB6QwJ9PW8l4n/ee0EuldeymWcAJN0+lE3ERginMWCO1wxCmJkCKGKm10x7RNFKJjwCiYEZ/7kRdKolJ3TcuXurFS9mMWRRwfoEB0jB12iKrpFNVRHFD2iZ/SK3qwn68V6tz6mrTlrNrOP/sD6/AHQxZcx</latexit>

@
✓
@v5
@x1

,
@v5
@x2

◆

<latexit sha1_base64="YQg7PG6yow4iEqyFoXZSq9DBfC8=">AAACO3ichVDLSsNAFJ34tr6iLt0MFkFBSlKfS8GNyypWC00Ik+mkHZw8mLkplpD/cuNPuHPjxoUibt07aQNqFTwwcOace+/MPX4iuALLejQmJqemZ2bn5isLi0vLK+bq2pWKU0lZk8Yili2fKCZ4xJrAQbBWIhkJfcGu/ZvTwr/uM6l4HF3CIGFuSLoRDzgloCXPvHAEC2DbCSShmZMQCZwI3PcO8q/brWfnu/ifknruSN7twU7FM6tWzRoC/yZ2SaqoRMMzH5xOTNOQRUAFUaptWwm4WTGaCpZXnFSxhNAb0mVtTSMSMuVmw91zvKWVDg5iqU8EeKh+78hIqNQg9HVlSKCnxr1C/MtrpxAcuxmPkhRYREcPBanAEOMiSNzhklEQA00IlVz/FdMe0RmBjrsIwR5f+Te5qtfsvVr9fL96cljGMYc20CbaRjY6QifoDDVQE1F0h57QC3o17o1n4814H5VOGGXPOvoB4+MTBOWumA==</latexit>



Backward (Reverse) Differentiation

Ø Performs well when computing large gradients relative to 
number of function outputs
Ø When might forward differentiation perform well? Why?

Ø Requires caching or recomputing intermediate 
activations from forward pass
Ø Active research on what to recompute vs cache

Lossx g g g



Deep Learning Frameworks



Declarative vs Imperative Abstractions
Ø Declarative (define-and-run): Embedded DSL used to 

construct static computation graph
Ø Examples: Theano (2010), Caffe (2014), TensorFlow (2015)
Ø Easier to optimize, distribute, and export models

Ø Imperative (define-by-run): Embedded DSL used to 
directly compute output resulting in a dynamic 
computation graph defined by the program
Ø Examples: Chainer (2015), autograd (2016), PyTorch (2017) 
Ø Interpreted execution of inference and gradient
Ø Easier to program and debug

Ø Hybrid Approaches: Current research
Ø TensorFlow Eager, MXNet



Theano – Original Deep Learning Framework

Ø First developed at the University of Montreal (2008)
Ø from Yoshua Bengio’s group

Ø Abstraction: Python embedded DSL (as a library) to 
construct symbolic expression graphs for complex 
mathematical expressions

Ø System: a compiler for mathematical expressions in Python 
Ø Optimizes mathematical expressions (e.g., (A+b)(A+b)=(A+b)^2)
Ø CPU/GPU acceleration
Ø Also … automatic differentiation



Declaring Variables

Building Expression Graph
Note that this looks like a NumPy 
expressionWhat is the 

value (type) 
of prediction?

x y w b

dot

-

exp

1+

1/

p_1

1-

log

1-

*

log

*

-1*

-

xent

Mean

**2

0.01*

Sum

+
Cost

Gradient operation 
can traverse graph

This is more difficult to 
debug and reason about.



Declaring Variables

Building Expression Graph
Note that this looks like a NumPy 
expression

Updates shared variables 
after computation

Instantiating
Values

What is the 
value (type) 

of prediction?
This is more difficult to 

debug and reason about.

Function call compiles graphs into 
optimized native execution.



Theano Compilation of Functions

Ø Rewriting (simplify) mathematical expression
Ø Exp(log(x)) = x

Ø Duplicate code elimination
Ø Important because gradient rewrites introduce redundancy

Ø Recall gradient calculations extend graph via the chain rule

Canonicalization Stabilization Specialization GPU 
Transfer

Code 
Generation



Theano Compilation of Functions

Addresses numerical stability of operations

Ø Example: for x = 709, x = 710 what is the value of

log(1 + exp(x)) = 
Ø for x = 709  è 709
Ø for x = 710 è inf
Ø Rewritten as x for x > 709

Canonicalization Stabilization Specialization GPU 
Transfer

Code 
Generation



Theano Compilation of Functions

Ø Rewrite subgraphs to more efficient forms
Ø pow(x,2) à square(x)
Ø Tensor slicing à memory aliasing 
Ø Mapping to best version of GEMM routines

Canonicalization Stabilization Specialization GPU 
Transfer

Code 
Generation



Theano Compilation of Functions

Ø GPU versions of ops are introduced (where possible)

Ø Copy routines are added to move data

Canonicalization Stabilization Specialization GPU 
Transfer

Code 
Generation



Theano Compilation of Functions

Ø Generate and link C++ and CUDA implementations of 
operators
Ø Picking from existing implementations
Ø Specialization for different dtypes

Canonicalization Stabilization Specialization GPU 
Transfer

Code 
Generation



What happened to Theano?
Ø Fairly advanced compared to TensorFlow (TF) in 2016

Ø Symbolic gradient optimization and wide range of operators
Ø Initially faster than TensorFlow 

Ø What happened? (some speculation…)
Ø Didn’t have the backing of a large industrial group

Ø TensorFlow was being pushed heavily by Google
Ø Did not support multi-GPU/distributed computation and limited 

support for user defined parallelization
Ø TensorFlow had more built-in deep learning operators
Ø Theano lacked visualization tools (e.g., TensorBoard)
Ø Complaints about error messages…?



PyTorch
Ø Imperative DL library which works like NumPy (on GPUs)

Ø and supports automatic differentiation

tensor([2.0814], device='cuda:0')

tensor([2.0814], dtype=torch.float64)

# tensor([[3., 3.],
#              [3., 3.]], grad_fn=<AddBackward0>)

# tensor(27., grad_fn=<MeanBackward0>)

# tensor([[4.5000, 4.5000],
#              [4.5000, 4.5000]])



This weeks readings



Reading for the Week

Ø Automatic differentiation in ML: Where we are and where we should 
be going
Ø NeurIPS’18
Ø Provides an overview of the state of automatic differentiation

Ø TensorFlow: A System for Large-Scale Machine Learning
Ø OSDI’16
Ø The primary TensorFlow paper discusses system and design goals

Ø JANUS: Fast and Flexible Deep Learning via Symbolic Graph Execution 
of Imperative Programs
Ø NSDI’19 
Ø Recent work exploring a method to bridge Declarative and Imperative 

approaches in TensorFlow

https://papers.nips.cc/paper/8092-automatic-differentiation-in-ml-where-we-are-and-where-we-should-be-going
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/pdf/1812.01329.pdf


Extra Suggested Reading

Ø Automatic Differentiation in Machine Learning: a 
Survey(JMLR’18)
Ø Longer discussion on automatic differentiation in ML

Ø Theano: A CPU and GPU Math Compiler in Python
(SciPy’10)
Ø Great overview of AD and Theano system

Ø TensorFlow Eager: A Multi-Stage, Python-Embedded DSL 
for Machine Learning (arXiv’19)
Ø Good follow-up to TF paper addressing limitations

http://www.jmlr.org/papers/volume18/17-468/17-468.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
https://arxiv.org/pdf/1903.01855.pdf


Automatic differentiation in 
ML: Where we are and 
where we should be going?
Bart van Merrie ̈nboer, Olivier Breuleux, Arnaud Bergeron, 
Pascal Lamblin

From Mila (home of Theano) and Google Brain (home of TF)



Automatic differentiation in ML: Where we 
are and where we should be going?
Ø Context: A vision paper that outlines the current state of automatic 

differentiation techniques and proposes a new functional, typed 
intermediate representation (IR) 

Ø Key Idea: Observe convergence of imperative and declarative 
approaches and draws connections to compilers à argues for the need 
for a common IR like those found in modern compilers.

Ø Contribution: Frames problem space and range of techniques.

Ø Rational for Reading: condensed context and some insights for future 
research directions



TensorFlow: A System for 
Large-Scale Machine 
Learning
Large fraction of Google Brain team under Jeff Dean



Context
Ø Need for distributed training for Deep Learning
Ø Parameter server abstractions were too general

Ø Difficult to use

Ø Theano not designed for distributed setting
DistBelief Framework



Big Ideas
Ø Adopts a dataflow programming abstraction

Ø Inspired by distributed data processing systems (@ google)
Ø Resulting abstraction is very similar to Theano

Ø Fine grained placement of operations on devices

Ø Support multiple distributed concurrency protocols



Recent advances in TensorFlow
Ø Keras : high-level layer composition API



What to think about when reading

Ø Relationship and comparisons to Theano?

Ø Support for distributed computing and exposed 
abstraction?

Ø What are the implications of design decisions on an 
Eager Execution

Additional Reading

Ø TensorFlow: Large-Scale Machine Learning on 
Heterogeneous Distributed Systems

https://arxiv.org/pdf/1603.04467.pdf


TVM
Tianqi et. al [OSDI’18]

*Currently visiting in the RISE Lab



TVM

Ø Originally derived from Halide
Ø Leverages similar IR and separation

of algorithm from schedule

Ø Focused on inference workloads
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Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
# Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows
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Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we

3



Tensor Index Expression

import tvm 

m, n, h = tvm.var('m'), tvm.var('n'), tvm.var('h') 
A = tvm.placeholder((m, h), name='A') 
B = tvm.placeholder((n, h), name=‘B') 

k = tvm.reduce_axis((0, h), name=‘k') 
C = tvm.compute((m, n), lambda i, j: tvm.sum(A[i, k] * B[j, k], axis=k)) 

Inputs

Shape of C

Compute C = dot(A, B.T)

Computation Rule 

TVM
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Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
# Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3), 
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we

3

Tensor Expressions are Expressive

out = tvm.compute(shape, lambda *i: tvm.max(0, out(*i))

ReLU

Affine Transformation

out = tvm.compute((n, m), lambda i, j: tvm.sum(data[i, k] * w[j, k], k)) 
out = tvm.compute((n, m), lambda i, j: out[i, j] + bias[i])

out = tvm.compute((c, h, w),  
  lambda i, x, y: tvm.sum(data[kc,x+kx,y+ky] * w[i,kx,ky], [kx,ky,kc])) 

Convolution
Guess what this describes?



TVM
Ø Enables declaring new hardware intrinsics
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Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
# Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3), 
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we
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able data reuse across threads through shared memory
regions. TVM supports this well-known GPU optimiza-
tion using a schedule primitive to achieve optimal per-
formance. The following GPU code example optimizes
matrix multiplication.

Barrier inserted 
automatically
by compiler

All threads cooperatively
load AS and BS in different
parallel patterns

for thread_group (by, bx) in cross(64, 64):
  for thread_item (ty, tx) in cross(2, 2):
    local CL[8][8] = 0
    shared AS[2][8], BS[2][8] 
    for k in range(1024):
      for i in range(4):
        AS[ty][i*4+tx] = A[k][by*64+ty*8+i*4+tx]
      for each i in 0..4:
        BS[ty][i*4+tx] = B[k][bx*64+ty*8+i*4+tx]
      memory_barrier_among_threads()
      for yi in range(8):
        for xi in range(8):
          CL[yi][xi] += AS[yi] * BS[xi]
      for yi in range(8):
        for xi in range(8):
          C[yo*8+yi][xo*8+xi] = CL[yi][xi]

Figure 7 demonstrates the impact of this optimiza-
tion. We introduce the concept of memory scopes to the
schedule space so that a compute stage (AS and BS in the
code) can be marked as shared. Without explicit memory
scopes, automatic scope inference will mark compute
stages as thread-local. The shared task must compute
the dependencies of all working threads in the group.
Additionally, memory synchronization barriers must be
properly inserted to guarantee that shared loaded data is
visible to consumers. Finally, in addition to being use-
ful to GPUs, memory scopes let us tag special memory
buffers and create special lowering rules when targeting
specialized DL accelerators.

4.3 Tensorization

DL workloads have high arithmetic intensity, which
can typically be decomposed into tensor operators like
matrix-matrix multiplication or 1D convolution. These
natural decompositions have led to the recent trend of
adding tensor compute primitives [1, 12, 21]. These
new primitives create both opportunities and challenges
for schedule-based compilation; while using them can
improve performance, the compilation framework must
seamlessly integrate them. We dub this tensorization: it
is analogous to vectorization for SIMD architectures but
has significant differences. Instruction inputs are multi-
dimensional, with fixed or variable lengths, and each has
different data layouts. More importantly, we cannot sup-
port a fixed set of primitives since new accelerators are
emerging with their own variations of tensor instructions.
We therefore need an extensible solution.

We make tensorization extensible by separating the
target hardware intrinsic from the schedule with a mech-
anism for tensor-intrinsic declaration. We use the same
tensor expression language to declare both the behavior
of each new hardware intrinsic and the lowering rule as-
sociated with it. The following code shows how to de-
clare an 8⇥8 tensor hardware intrinsic.

w, x = t.placeholder((8, 8)), t.placeholder((8, 8))
k = t.reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j: 
               t.sum(w[i, k] * x[j, k], axis=k))

def gemm_intrin_lower(inputs, outputs):
   ww_ptr = inputs[0].access_ptr(“r")
   xx_ptr = inputs[1].access_ptr("r")
   zz_ptr = outputs[0].access_ptr("w")
   compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
   reset = t.hardware_intrin("fill_zero", zz_ptr)
   update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
   return compute, reset, update

gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)

declare behavior

lowering rule to generate
hardware intrinsics to carry 
out the computation

Additionally, we introduce a tensorize schedule primi-
tive to replace a unit of computation with the correspond-
ing intrinsics. The compiler matches the computation
pattern with a hardware declaration and lowers it to the
corresponding hardware intrinsic.

Tensorization decouples the schedule from specific
hardware primitives, making it easy to extend TVM
to support new hardware architectures. The generated
code of tensorized schedules aligns with practices in
high-performance computing: break complex operations
into a sequence of micro-kernel calls. We can also use
the tensorize primitive to take advantage of handcrafted
micro-kernels, which can be beneficial in some plat-
forms. For example, we implement ultra low precision
operators for mobile CPUs that operate on data types
that are one- or two-bits wide by leveraging a bit-serial
matrix vector multiplication micro-kernel. This micro-
kernel accumulates results into progressively larger data
types to minimize the memory footprint. Presenting the
micro-kernel as a tensor intrinsic to TVM yields up to a
1.5⇥ speedup over the non-tensorized version.

4.4 Explicit Memory Latency Hiding
Latency hiding refers to the process of overlapping mem-
ory operations with computation to maximize utilization
of memory and compute resources. It requires different
strategies depending on the target hardware back-end.
On CPUs, memory latency hiding is achieved implic-
itly with simultaneous multithreading [14] or hardware
prefetching [10, 20]. GPUs rely on rapid context switch-
ing of many warps of threads [44]. In contrast, special-
ized DL accelerators such as the TPU [21] usually favor
leaner control with a decoupled access-execute (DAE)
architecture [35] and offload the problem of fine-grained
synchronization to software.

Figure 9 shows a DAE hardware pipeline that reduces
runtime latency. Compared to a monolithic hardware de-
sign, the pipeline can hide most memory access over-
heads and almost fully utilize compute resources. To
achieve higher utilization, the instruction stream must be
augmented with fine-grained synchronization operations.
Without them, dependencies cannot be enforced, leading
to erroneous execution. Consequently, DAE hardware
pipelines require fine-grained dependence enqueuing/d-
equeuing operations between the pipeline stages to guar-
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Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
# Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows

conv2d relu conv2d relu flatten

dense

softmax

operation

inputs
dataflow
dependency

w1 w2

w3

data

channels=32,
kernel_size=(3,3), 
padding=(1,1),
use_bias=0

example attributes

shape=(1,10)

Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we
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5 Automating Optimization

Given the rich set of schedule primitives, our remaining
problem is to find optimal operator implementations for
each layer of a DL model. Here, TVM creates a special-
ized operator for the specific input shape and layout as-
sociated with each layer. Such specialization offers sig-
nificant performance benefits (in contrast to handcrafted
code that would target a smaller diversity of shapes and
layouts), but it also raises automation challenges. The
system needs to choose the schedule optimizations –
such as modifying the loop order or optimizing for the
memory hierarchy – as well as schedule-specific param-
eters, such as the tiling size and the loop unrolling factor.
Such combinatorial choices create a large search space of
operator implementations for each hardware back-end.
To address this challenge, we built an automated sched-
ule optimizer with two main components: a schedule ex-
plorer that proposes promising new configurations, and
a machine learning cost model that predicts the perfor-
mance of a given configuration. This section describes
these components and TVM’s automated optimization
flow (Figure 11).

5.1 Schedule Space Specification
We built a schedule template specification API to let a
developer declare knobs in the schedule space. The tem-
plate specification allows incorporation of a developer’s
domain-specific knowledge, as necessary, when specify-
ing possible schedules. We also created a generic mas-
ter template for each hardware back-end that automati-
cally extracts possible knobs based on the computation
description expressed using the tensor expression lan-
guage. At a high level, we would like to consider as many
configurations as possible and let the optimizer manage
the selection burden. Consequently, the optimizer must
search over billions of possible configurations for the real
world DL workloads used in our experiments.

5.2 ML-Based Cost Model
One way to find the best schedule from a large configu-
ration space is through blackbox optimization, i.e., auto-
tuning. This method is used to tune high performance
computing libraries [15, 46]. However, auto-tuning re-
quires many experiments to identify a good configura-
tion.

An alternate approach is to build a predefined cost
model to guide the search for a particular hardware back-
end instead of running all possibilities and measuring
their performance. Ideally, a perfect cost model con-
siders all factors affecting performance: memory access
patterns, data reuse, pipeline dependencies, and thread-

Raspberry Pi

Tracker
Mali GPU

Nvidia GPU

TensorOp 
Specification

Schedule Space 
Template

Database

Device Cluster

Schedule Explorer

ML Cost Model

log

querytraining 
data FPGA Board

rpc
get_perf

…
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Figure 11: Overview of automated optimization frame-
work. A schedule explorer examines the schedule space
using an ML-based cost model and chooses experiments
to run on a distributed device cluster via RPC. To im-
prove its predictive power, the ML model is updated pe-
riodically using collected data recorded in a database.

Method Category Data
Cost

Model
Bias

Need
Hardware
Info

Learn
from
His-
tory

Blackbox auto-tuning high none no no
Predefined cost model none high yes no
ML based cost model low low no yes

Table 1: Comparison of automation methods. Model bias
refers to inaccuracy due to modeling.

ing patterns, among others. This approach, unfortu-
nately, is burdensome due to the increasing complexity
of modern hardware. Furthermore, every new hardware
target requires a new (predefined) cost model.

We instead take a statistical approach to solve the cost
modeling problem. In this approach, a schedule explorer
proposes configurations that may improve an operator’s
performance. For each schedule configuration, we use
an ML model that takes the lowered loop program as in-
put and predicts its running time on a given hardware
back-end. The model, trained using runtime measure-
ment data collected during exploration, does not require
the user to input detailed hardware information. We up-
date the model periodically as we explore more config-
urations during optimization, which improves accuracy
for other related workloads, as well. In this way, the qual-
ity of the ML model improves with more experimental
trials. Table 1 summarizes the key differences between
automation methods. ML-based cost models strike a bal-
ance between auto-tuning and predefined cost modeling
and can benefit from the historical performance data of
related workloads.

Machine Learning Model Design Choices. We must
consider two key factors when choosing which ML
model the schedule explorer will use: quality and speed.
The schedule explorer queries the cost model frequently,
which incurs overheads due to model prediction time
and model refitting time. To be useful, these overheads
must be smaller than the time it takes to measure per-
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Done!


