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Agenda for Today

> 1:10-2:00: Efficient ML and Ideas in ML Frameworks
» 2:00-2:45: PC Meeting Discussions
> 2:45-3:00: Break

» 3:00-4:00: Guest Lecture by Tiangi Chen



Objectives For Today

» Get a good understanding of Pruning:

» Methods for pruning applied to Inference

» Pruning for efficient Training (Lottery Hypothesis Ticket)

» Learn About Quantization
> Integer-only Quantization

> Mixed Precision Quantization

» Important Ideas in ML Frameworks



Efficient ML with Pruning

Most of the slides in this section are courtesy of Jonathan Frankle
[Harvard/MosaicML]




Neural Network Training is Costly

Training FLOPs Scaling for SOTA CV, NLP, and Speech Models

Research Questions: o

« Fundamentally do we need CUNLP Spesch: 15/ 2yrs N
such large models to learn 2 icigs e
the representations that we “ =" i
are looking for? e ~em

- Can we reduce this cost B
without sacrificing N ° :
accuracy? o
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Reduced Precision Training

» As we saw in lec 2, we have been very successful in FP16
training which enabled 10x improvements in throughput
» But it has been very difficult to go to reduce the precision further
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INT8/4 training often leads
to significant accuracy
degradation and is still an
open research problem
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How about Utllizing Sparsity?

» New HW generations such as A100 have built-in support for
accelerating sparse workloads

» HW vendors can achieve significantly higher gains if sparse
training becomes feasible for ML like FP16

NVIDIA V100 Tensor Core FP16 NVIDIA A100 Tensor Core FP16 with Sparsity NVIDIA V100 FP32 NVIDIA A100 Tensor Core TF32 with Sparsity
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Sparsity: One of the Challenging
Problems in ML

1990

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla
AT&T Bell Laboratories, Holmdel, N. J. 07733

ABSTRACT

We have used information-theoretic ideas to derive a class of prac-
tical and nearly optimal schemes for adapting the size of a neural
network. By removing unimportant weights from a network, sev-
eral improvements can be expected: better generalization, fewer
training examples required, and improved speed of learning and /or
classification. The basic idea is to use second-derivative informa-
tion to make a tradeoff between network complexity and training
set error. Experiments confirm the usefulness of the methods on a
real-world application.




Background: Neural Network Pruning
prune /pru:n/ verb

To reduce the extent of [a neural network] by
removing superfluous or unwanted parts.

(Oxford English Dictionary)

Goal: reduce the cost of inference
and/or Training



Background: Neural Network Pruning

Pruning similar to the Jenga
game. We only remove blocks
that are not sensitive.

Popular metrics for measuring
sensitivity:

* Magnitude

* Gradients

* Hessian

Image from UniversityCoop

E Yu S*, Yao Z*, Gholami* A, Dong Z*, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022.
i LeCunY, Denker J, Solla S. Optimal brain damage. Advances in neural information processing systems. 1989.
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https://www.universitycoop.com/media/blog/1908%20Tailgate/jenga%20(2).jpg

Background: Neural Network Pruning

Pruning similar to the Jenga
game. We only remove blocks
that are not sensitive.

There are many metrics for
measuring sensitivity:
* Magnitude

=

Learning both Weights and Connections for Efficient
Neural Networks

Song Han Jeff Pool
Stanford University NVIDIA
John Tran William J. Dally
NVIDIA Stanford University
| Taycr -1 i >

COMPARING REWINDING AND FINE-TUNING
IN NEURAL NETWORK PRUNING

Alex Renda Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL MIT CSAIL
renda@csail.mit.edu jfrankle@csail.mit.edu mcarbin@csail.mit.edu
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Yu S*, Yao Z*, Gholami* A, Dong Z*, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022. i 12
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Background: Neural Network Pruning

Pruning similar to the Jenga
game. We only remove blocks
that are not sensitive.
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Optimal Brain Damage
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There are many metrics for
measuring sensitivity:

Yann Le Cun, John S. Denker and Sara A. Solla
AT&T Bell Laboratories, Holmdel, N. J. 07733

Hessian-Aware Pruning and Optimal Neural Implant

Shixing Yu''} Zhewei Yao%*, Amir Gholami®*, Zhen Dong?*,
Sehoon Kim?, Michael W. Mahoney??, Kurt Keutzer?
Peking University, 2University of California, Berkeley, 3ICSI

» Hessian

Image from UniversityCoop
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E LeCun Y, Denker J, Solla S. Optimal brain damage. Advances in neural information processing systems. 1989.
i Yu S*, Yao Z*, Gholami* A, Dong Z*, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022.
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Hessian Aware Pruning

» Why Second-order instead of magnitude pruning?
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i LeCun Y, Denker J, Solla S. Optimal brain damage. Advances in neural information processing systems. 1989. !
1 Yu S*, Yao Z*, Gholami* A, Dong Z*, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022. : 14
i Yao Z*, Gholami A*, Keutzer K, Mahoney M. PyHessian: Neural networks through the lens of the Hessian. AAAI, 2020. i



Background: Neural Network Pruning

1) Train the network

2) Remove superfluous structure

3) Fine-tune the network

4) Optionally: prune and fine-tune iteratively

BB

Randomly Initialized Trained then Pruned Fine-Tuned




Pruning Can be Effective

> If we can indeed find pruned models that achieve high accuracy that means that
there exists sub-networks that have enough representational power.

> Then why not sparse models to begin with?

Method Acc.(%) Param.(%) FLOPs(%)
VGG16 93.96 100.0 100.0
+ L1[36] 93.40 36.0 65.7
_ SSS[25] 93.02 26.2 58.4
Different VarP[73] 93.18 26.7 60.9
structured HRank[37] 93.43 17.1 46.5
: GAL-0.05[39] 92.03 224 60.4
in
pruning HRank[37] 92.34 17.9 347
methods GAL-0.1[39]  90.73 17.8 54.8
| HaP 93.66 10.1 29.7

______________________________________________________________________________________________________________________________________



Research Question

Research Question: If we can prune models after
training, can we train smaller models?



Research Question: Training Sparse
Models?e

If we could train small models that are sparse from the beginning, then
we can significantly reduce the cost of training

NVIDIA V100 Tensor Core FP16 NVIDIA A100 Tensor Core FP16 with Sparsity NVIDIA V100 FP32 NVIDIA A100 Tensor Core TF32 with Sparsity
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Research Question

If we can prune models after training, can we train
smaller models?

Capacity for representation vs. optimization



Research Question

Capacity for representation

20



Research Question

Capacity for

optimization ??
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Overparameterized Models

» Current Hypothesis: Empirical results have consistently
been showing that large models are easier to frain and
generalize better

> It appears as if adding more parameters makes the optimization
problem easier

> |f this is true, then is training small models infeasible?

Adding more parameters
(Disclaimer: This hypothesis is highly debated and is not always true!) 2



s Training Small-Scale NNs Possible¢

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL

jfrankle@csail.mit.edu mcarbin@csail.mit.edu

ICLR 2019



Attempting to Train a Pruned Network

1) Train the network
2) Remove superfluous structure

3) Randomly initialize the pruned network
4) Train it to convergence

00 )
09000

Pruned then Trained



Attempting to Train a Pruned Network

Does not reach full accuracy



Attempting to Train a Pruned Network

Learning both Weights and Connections for Efficient
Neural Networks

Song Han Jeff Pool
Stanford University NVIDIA
songhan@stanford.edu jpool@nvidia.com

John Tran William J. Dally
NVIDIA Stanford University
johntran@nvidia.com NVIDIA
dally@stanford.edu

It 1s better to retain the weights from the initial training phase for the
connections that survived pruning than it 1s to reinitialize.



Attempting to Train a Pruned Network

PRUNING FILTERS FOR EFFICIENT CONVNETS

Hao Li* Asim Kadav Igor Durdanovic
University of Maryland NEC Labs America NEC Labs America
haoli@cs.umd.edu asim@nec-labs.com igord@nec-labs.com

Hanan Samet’ Hans Peter Graf
University of Maryland NEC Labs America
hjs@cs.umd.edu hpg@nec-labs.com

Training a pruned model from scratch performs worse than retraining

a pruned model, which may indicate the difficulty of training a
network with small capacity.



Attempting to Train a Pruned Network

PRUNING FILTERS FOR EFFICIENT CONVNETS

Hao Li* Asim Kadav Igor Durdanovic
University of Maryland NEC Labs America NEC Labs America
haoli@cs.umd.edu asim@nec-labs.com igord@nec-labs.com

Hanan Samet’ Hans Peter Graf
University of Maryland NEC Labs America
hjs@cs.umd.edu hpg@nec-labs.com

which may indicate the difficulty of training a
network with small capacity.



Iterative Magnitude Pruning (IMP)

1) Train the network
2) Remove superfluous structure
3) Reset each weight to its original initialization
4) Train it to convergence and repeat iteratively
v
® o
e e

Pruned at Initialization Pruned then Trained



Results
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Results
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Limitations

 Subnetworks are found retroactively

 Exploiting pruning for better performance requires software and
hardware support

e Small, vision networks and tasks
 Does not work for larger models and more complicated datasets

S tay TU ne d fO r t h e P C M S Etl n g Linear Mode Connectivity and the Lottery Ticket Hypothesis

Jonathan Frankle! Gintare Karolina Dziugaite> Daniel M. Roy3* Michael Carbin !

Abstract Wo
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1dy whether a neural network optimizes to oW

me, linearly connected minimum under dif-

samples of SGD noise (e.g., random data

and augmentation). We find that standard /J\ /’\
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Sneak Peak of Results For More
Complex Models/Datasets

VGG-16 (1.5%)
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Iteration 1K out of 62K =1.6% into training



Sneak Peak of Results For More
Complex Models/Datasets

ResNet-50 (30.0%)
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High Level Findings in the literature on
this topic

Sparse subnetworks reach full accuracy:

In small networks, this occurs at initialization.
For large networks, this occurs early in training.
(we will see the details during the PC meeting).

But this alone does not help us imfprove the speed up training. However, this
is an active area of research, and it we could find the lottery hypothesis ticket
in @ more efficient manner, then this could significantly improve training cost.



Another Limitation: Structured vs
Unstructured Sparsity

Another Limitation

Unstructured Sparsity:

» Enables significantly higher levels of sparsity (~5%)
» Harder to accelerate in HW

Structured Sparsity:

» Easier to accelerate in HW

» Does not allow as much sparsity (~60%)

Unstructured
Sparsity

Structured
Sparsity

39



Further Reading

» We only talked about weight sparsity, but there is a large
body of work on activation sparsity, token pruning, training
free pruning, ...

> If you are interested to learn more about pruning:

> Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks

> The state of sparsity in deep neural networks

» Whatis the State of Neural Network Pruninge

40


https://arxiv.org/pdf/2102.00554.pdf
https://arxiv.org/pdf/1902.09574.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf

Efficient ML with

Quantization




Quantization Enables Fewer Memory
AcCcesses

« Memory accesses are the principal cost in both latency and energy
* Lower precision weights in DNN mean each memory access brings more data values

« More data values few accesses overall

Operation: Energy | Relative Energy Cost
o T T i e B e - S (pJ)
i g 8 8b Add 0.03
& 16b Add 0.05
5 # 32b Add 0.1
i 16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
% 32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7

32b SRAM Read (8KB) | 5
32b DRAM Read 640
T T [Horowitz, ISSCC 2014] 1 10 102 103 10¢

i Image Credit: Sdxcentral, nvidia E
1 Table credit: Mark Horowitz

_______________________________



Quantization

» Uniform quantization is a linear mapping from floating
point values to quantized infeger values

)K ) w2 27 ‘

Floating Point Values

76 119 21
Y Y - 0.68 1.43 - 81 99
FP32 INT8
O (pre-quantized) (quantized)
O
0 ] 255 » Less memory footprint

8-bit Quantized Values » Faster inference on integer arithmetic units

43



Uniform Quantization

* r:Real value
Tmax» Tmin - Max/min range of values _ Tmax — Tmin
: ok , 2"B —1
* B: Quantization bits
r=5(q—z
+ S (FP32), z (int): Scale and bias (q )

q: Fixed point quantized values

Some values are exactly Others end up getting rounded.
Min/max real values map to representable, and 0.f is Dequantizing them back gives
min/max quantized value always one of them the nearest fixed-point number

(q —2z)

Values outside the
original min/max
range get clamped

o A NI FENENEENEN| ESRNNEENENY NENNENNNNEP AERNENN I’ NERENERENN  IAAEEAENN N =
e e e ‘ ‘‘‘‘‘‘ # LLI®. ’ et GEEEERENE S o
rmin rmax
Q | 1 a Y PN 1 ?
| | L h ¢ b |
0 1 2 3 253 254 255

Uniform 8-bit Quantization
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Integer-only Quantization!

INT4 Weights

INT4
INT4

INT4 Activations

INT4 Multiplication INT16/32 INT32 -> INT4
Accumulation Dyadic Scaling

—0—0— 0=

» Key idea is to not fold BN during training and only do BN folding at the
end, otherwise you will effectively be training a model without BN
which is known to be hard to optimize

INT4 Weights

INT4 INT32 INT32 -> INT4
Multiplication Accumulation  Dyadic Scaling

INT4

INT4

INT4 Activations

—Q0— 00—k

45



Integer-only Quantization Works

(a) MobileNetV2
Method Int Uni BL Precision Size BOPS Top-1
Baseline X 73.03 W32A32 13.2 322 73.03
RVQuant (Park et al., 2018) X X 7010 WS8A8 33 20 70.29
CalibTIB(Hubara et al., 2020) X 7190 WS8A8 33 20 71.60
HAWQV3 73.03 W8A8 33 20 73.01
(¢) InceptionV3
Method Int Uni BL Precision Size BOPS Top-1
Baseline X 78.88 W32A32 90.9 5850 78.88
Integer Only (Jacob et al., 2018) 78.30 WBS8A8 22.7 366 74.20
RVQuant (Park et al., 2018) X X 7419 WB8A8 227 366 74.22

HAWQV3 78.88 WRSAS

2277 366 78.76

L Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K.
' Keutzer, HAWQ-V3: Dyadic Neural Network Quantization in Mixed Precision, ICML’21.
i Online Code: https://github.com/Zhen-Dong/HAWQ

___________________________________________________________________________________________________________________

Almost not
accuracy
degradation

Almost not
accuracy
degradation
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https://github.com/Zhen-Dong/HAWQ

Infeger-only Can be applied to

general Non-Linearities

1.0

0.8

0.6

0.4

0.2

0.0

Proposed Solution: Approximate erf with 2"d-order polynomial

—— Real erf term
—— Approximated erf term

3. Symmetric exte 2. Clip

4£/ 1. Inte:rpolat:iofn

-6 4 -2 0 2 4 6
X

Real erf term

GELU(z) := 2®(z) = x - % [1 + erf(:c/\/i)]
i-GELU(z) ==z - % [1 + L(%)]

\ J
|

Approximated erf term
Can be computed with integer arithmetic

47



Infeger-only Soffmax

We can even approximate exp(x) with 2"d-order polynomials with very low error

Approximate exponential in the interval [-In2, O]

r=(—In2)z+p

Quotient z: integer
Remainder p: lies in [-In2, O] 08

1.0

exp(Z) = 27 % exp(p) = exp(p) >> z os
\_Y_}

Compute with approximation

0.4

0.2

0.0

— y =exp(x)




Integer-only Quantization Works:

(a) RoBERTa-Base
Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE |Avg.
Baseline X 87.8 874 90.4 92.8 94.6 61.2 91.1 90.9 78.0 |86.0
I-BERT v 87.5 874 90.2 92.8 95.2 62.5 90.8 91.1 794 |86.3
Diff -0.3 0.0 -0.2 0.0 +0.6 +1.3 -0.3 +0.2 +1.4 (+40.3
(b) RoBERTa-Large
Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE |Avg.
Baseline X 90.0 89.9 92.8 94.1 96.3 68.0 92.2 91.8 86.3 |89.0
I-BERT v 90.4 90.3 93.0 94.5 96.4 69.0 92.2 93.0 87.0 |89.5
Diff +0.4 +0.4 +0.2 +0.4 +0.1 +1.0 0.0 +1.2 +0.7 |[+0.5
> |-BERT is integrated in HuggingFace (~8K downloads per month)
| S. Kim*, A. Gholami*, Z. Yao*, M. Mahoney, K. Keutzer, I-BERT: Integer-only BERT Quantization, ICML, 2021. | 49


https://huggingface.co/kssteven/ibert-roberta-base

What about Sub-INT8 Quantization?¢

Can we go even further and perform lower precision quantization?

- @_ - - FC&softmax
Downsample
4-bit 4-bit 4-bit 4-bit
8-bit 8-bit 8-bit 8-bit

Uniform low precision does not work as it can significantly degrade accuracy => Use mixed-precision

- But how should we set the precision for each kernel?
50



Hessian Aware Quantization

This is somewhat similar to the Jenga
game. We only remove blocks that are
not sensitive.

» Only use low precision quantization
for insensitive parameters (flat loss

landscape)

» Use high precision quantization for
sensitive parameters (sharp loss

landscape)

This sensitivity can be calculated through
Hessian which quantifies the relative

sharpness/flatness of the loss landscape.

Image from UniversityCoop

E Dong Z, Yao Z, Arfeen D, Gholami A, Mahoney MW, Keutzer K. Hawg-v2: Hessian aware trace-weighted quantization of neural networks. NeurlPS, 2020. E
E Yu S, Yao Z, Gholami A, Dong Z, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022. |
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Hessian and Loss Landscape Curvature

Theorem 1 After quantizing the model to same precision, fine tuning layers that have smaller average trace
of Hessian can achieve a smaller loss, compared to layers with larger average trace of Hessian.

1
average tr(H) = — Z H;;

//_,,/’I 2ND BL/c;K A= :38L9|

Loss(Log)
Loss(Log)

Z.Dong, Z. Yao, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer, HAWQ-V2: Trace Weighted Hessian Aware Quantization, NeurlPS 2020.

Z.Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, HAWQ-V3: Dyadic Neural Network !
Quantization in Mixed Precision, ICML, 2021. :
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Mixed Precision Quantization for NLP

Named Entity Recognition Task

Method w-bits e-bits F;  Size
Baseline 32 32 95.00 4109
Q-BERT 8 8 94.79 102.8
DirectQ 4 8 89.86 62.2
Q-BERT 4 8 9490 62.2
DirectQ 3 8 84.92 52.1
Q-BERT 3 8 94.78 52.1
Q-BERTw 2/4mr 8 94.55 52.1
DirectQ 2 8 54.50 42.0
Q-BERT 2 8 91.06 42.0
Q-BERTw 2/3me 8 94.37 45.0

___________________________________________________________________________________________________________________________________________________________________________



Summary:

» Quantization and Pruning of a model depends on the loss
landscape

> INT8 Quantization has been proved to be very effective for
inference without accuracy degradation

> Typically yields 2-4x speed up and 4x reduction in memory volume

» Lower Precision Quantization is possible but often there is an
accuracy/speed trade-off

Less Robust to Compression More Robust to Compression

54



Further Reading

> |If you are interested to learn more about quantization see
the following papers:

> A survey of guantization methods for efficient neural
network inference

» Quantization and training of neural networks for efficient
integer-arithmetic-only inference
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https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf

