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Attack Scenarios



Training: Data Poisoning Attack

» Scenario: Spammers rating emails to affect classifier.
» Real-world problem

> Kinds of Attacks

» Train model to misclassify their spam as ham.
» Train model to misclassify everything (DoS attack). why<e
» Train model to classity competitor email as spam.

» Responses

» Careful validation of training data
» Reject on negative impact (RONI) defense

> Personalization



Training: Extracting Model, Alg., Data

> Kinds of attacks:
» Crafting labeled inputs to reveal imporfant features
» Modifying data/gradient fo probe global loss
» Tracking changes in model to learn about users

» Possible Solutions (Federated sefting)
» Secure multi-party computation
» Trusted enclaves



Inference: Evasion Attacks &
Adversarial Inputs

> Scenarios
> spammers modify content fo bypass filters
» qadversary modifies signs fo confuse autonomous vehicles

> Kinds of Atfacks

» Leveraging adversarial noise to minimally perturb inputs while
substantially changing predictions.

» Whitebox attacks seem to tfransfer to blackbox settings

» Possible Solutions
» Robust model design
» Noise elimination
» Armsrace ...
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Abstract

Recent studies show that the state-of-the-art deep neural
networks (DNNs) are vulnerable to adversarial examples,
resulting from small-magnitude perturbations added to the
input. Given that that emerging physical systems are us-
ing DNNs in safety-critical situations, adversarial examples
could mislead these systems and cause dangerous situations.
Therefore, understanding adversarial examples in the physi-
cal world is an important step towards developing resilient
learning algorithms. We propose a general attack algorithm,
Robust Physical Perturbations (RP;), to generate robust
visual adversarial perturbations under different physical
conditions. Using the real-world case of road sign classifi-
cation, we show that adversarial examples generated using
RP; achieve high targeted misclassification rates against
standard-architecture road sign classifiers in the physical
world under various environmental conditions, including
viewpoints. Due to the current lack of a standardized testing
method, we propose a two-stage evaluation methodology for
robust physical adversarial examples consisting of lab and
field tests. Using this methodology, we evaluate the efficacy
of physical adversarial manipulations on real objects. With
a perturbation in the form of only black and white stickers,
we attack a real stop sign, causing targeted misclassification
in 100% of the images obtained in lab settings, and in 84.8%
of the captured video frames obtained on a moving vehicle
(field test) for the target classifier.

1. Introduction

Deep Neural Networks (DNNs) have achieved state-of-
the-art, and sometimes human-competitive, performance
on many computer vision tasks [11, 14} 36]. Based on

*These authors contributed equally.

these successes, they are increasingly being used as part
of control pipelines in physical systems such as cars [8,17],
UAVs [4,24], and robots [40]. Recent work, however, has
demonstrated that DNNs are vulnerable to adversarial per-
turbations [5}9, 10,15} 16,22,25,29,30,35]. These carefully
crafted modifications to the (visual) input of DNNs can cause
the systems they control to misbehave in unexpected and
potentially dangerous ways.

This threat has gained recent attention, and work in
computer vision has made great progress in understanding
the space of adversarial examples, beginning in the digi-
tal domain (e.g. by modifying images corresponding to a
scene) [9,22,25,35], and more recently in the physical do-
main [1,2,13,32]. Along similar lines, our work contributes
to the understanding of adversarial examples when pertur-
bations are physically added to the objects themselves. We
choose road sign classification as our target domain for sev-
eral reasons: (1) The relative visual simplicity of road signs
make it challenging to hide perturbations. (2) Road signs
exist in a noisy unconstrained environment with changing
physical conditions such as the distance and angle of the
viewing camera, implying that physical adversarial perturba-
tions should be robust against considerable environmental
instability. (3) Road signs play an important role in trans-
portation safety. (4) A reasonable threat model for transporta-
tion is that an attacker might not have control over a vehicle’s
systems, but is able to modify the objects in the physical
world that a vehicle might depend on to make crucial safety
decisions.

The main challenge with generating robust physical per-
turbations is environmental variability. Cyber-physical sys-
tems operate in noisy physical environments that can de-
stroy perturbations created using current digital-only algo-
rithms [19]. For our chosen application area, the most dy-
namic environmental change is the distance and angle of

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”
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Figure 2: RP; pipeline overview. The input is the target Stop
sign. RP, samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.



Inference: Model + Data Inversion

» Scenario: Query public prediction APIs to exfract information
from the fraining data or steal the model.

> Kinds of Aftacks

> Aclive learning attack to construct training dafa poinfts that resolve
decision boundary and allow model extraction.

» Membership inference attacks defermine if a piece of dafa was used
in training
» Modelinversion attacks can construct training inputs given labels

» Possible Solutions
» Limit confidence information and query rates
» Introduce noise in predictions
» Model watermarks



Model Inversion Attacks that Exploit Confidence Information

and Basic Countermeasures

Matt Fredrikson
Carnegie Mellon University

ABSTRACT

Machine-learning (ML) algorithms are increasingly utilized
in privacy-sensitive applications such as predicting lifestyle
choices, making medical diagnoses, and facial recognition. In
a model inversion attack, recently introduced in a case study
of linear classifiers in personalized medicine by Fredrikson
et al. [13], adversarial access to an ML model is abused
to learn sensitive genomic information about individuals.
Whether model inversion attacks apply to settings outside
theirs, however, is unknown.

We develop a new class of model inversion attack that
exploits confidence values revealed along with predictions.
Our new attacks are applicable in a variety of settings, and
we explore two in depth: decision trees for lifestyle surveys
as used on machine-learning-as-a-service systems and neural
networks for facial recognition. In both cases confidence val-
ues are revealed to those with the ability to make prediction
queries to models. We experimentally show attacks that are
able to estimate whether a respondent in a lifestyle survey
admitted to cheating on their significant other and, in the
other context, show how to recover recognizable images of
people’s faces given only their name and access to the ML
model. We also initiate experimental exploration of natural
countermeasures, investigating a privacy-aware decision tree
training algorithm that is a simple variant of CART learn-
ing, as well as revealing only rounded confidence values. The
lesson that emerges is that one can avoid these kinds of MI
attacks with negligible degradation to utility.

1. INTRODUCTION

Computing systems increasingly incorporate machine learn-
ing (ML) algorithms in order to provide predictions of lifestyle
choices [6]. medical diaenoses [20]. facial recocnition [1].

Somesh Jha
University of Wisconsin—Madison

Thomas Ristenpart
Cornell Tech

over easy-to-use public HTTP interfaces. The features used
by these models, and queried via APIs to make predictions,
often represent sensitive information. In facial recognition,
the features are the individual pixels of a picture of a per-
son’s face. In lifestyle surveys, features may contain sensitive
information, such as the sexual habits of respondents.

In the context of these services, a clear threat is that
providers might be poor stewards of sensitive data, allow-
ing training data or query logs to fall prey to insider at-
tacks or exposure via system compromises. A number of
works have focused on attacks that result from access to
(even anonymized) data [18,29,32,38]. A perhaps more sub-
tle concern is that the ability to make prediction queries
might enable adversarial clients to back out sensitive data.
Recent work by Fredrikson et al. [13] in the context of ge-
nomic privacy shows a model inversion attack that is able
to use black-box access to prediction models in order to es-
timate aspects of someone’s genotype. Their attack works
for any setting in which the sensitive feature being inferred
is drawn from a small set. They only evaluated it in a single
setting, and it remains unclear if inversion attacks pose a
broader risk.

In this paper we investigate commercial ML-as-a-service
APIs. We start by showing that the Fredrikson et al. at-
tack, even when it is computationally tractable to mount, is
not particularly effective in our new settings. We therefore
introduce new attacks that infer sensitive features used as
inputs to decision tree models, as well as attacks that re-
cover images from API access to facial recognition services.
The key enabling insight across both situations is that we
can build attack algorithms that exploit confidence values
exposed by the APIs. One example from our facial recogni-
tion attacks is depicted in Figure 1: an attacker can produce
a recognizable image of a person, given only API access to a

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.



Big Concepfs



Big Concepts in Secure ML

» Adversarial Inputs: Inputs that are consfructed to “trick”
classifier info misclassitying (usually for evasion)

> Federated Learning: A form of distributed learning in with
imited comm. and non-iid data distribution

> Differential Privacy: A formal guarantee bounding the
information leaked by a randomized algorithm

» Security Technologies:

> Secure Multi-party Computation: Cryptographic protocols for
shared computation without disclosing inputs.

> Trusted Execution Environments: Hardware framework for secure
computation.



Federated Learning

» Terminology was introduced in *Communication-Efficient Learning
of Deep Networks from Decentralized Data” (AlStats’17)

A form of distributed learning with:

Ez;m i » Original data does not leave device

» Limited communication (e.g., WAN)

» Datais not assumed to be iid
// // \\ » More parties with far less data each

>

Infrequent/random participation
@E @E @E @E Securitye


https://arxiv.org/pdf/1602.05629.pdf

Federated Learning and Security

> Eliminates data collection in the cloud

Consumer Privacy Bill of Rights OECD Privacy Guidelines (excerpts)

Collection Limitation Principle.
There should be limits to the collection
of personal data and any such data
should be obtained by lawful and fair
means and, where appropriate, with
the knowledge or consent of the data
subject.

Focused Collection: Consumers have
aright to reasonable limits on the
personal data that companies collect
and retain.

Accountability. Consumers have a
right to have personal data handled by
companies with appropriate measures
in place to assure they adhere to the

Accountability Principle. A data
controller should be accountable for
complying with measures which give
effect to the principles stated above.

Consumer Privacy Bill of Rights.

CONSUMER DATA PRIVACY
IN A NETWORKED WORLD:
A FRAMEWORK FOR PROTECTING

PRIVACY AND PROMOTING INNOVATION
IN THE GLOBAL DIGITAL ECONOMY

DHS Privacy Policy (generalized)

Data Minimization: Organizations
should only collect Pll that is directly
relevant and necessary to accomplish
the specified purpose(s) and only
retain Pl for as long as is necessary to
fulfill the specified purpose(s).

Accountability and Auditing:
Organizations should be accountable
for complying with these principles,
providing training to all employees and
contractors who use Pll, and auditing
the actual use of Pll to demonstrate
compliance with these principles

and all applicable privacy protection
requirements.

APEC Principles (excerpts)

Collection Limitation. The collection
of personal information should be
limited to information that is relevant
to the purposes of collection and any
such information should be obtained
by lawful and fair means, and where
appropriate, with notice to, or consent
of, the individual concemed.

Accountability. A personal informa-
tion controller should be accountable
for complying with measures that
give effect to the Principles stated
above. When personal information is
to be transferred to another person or
organization, whether domestically or
internationally, the personal informa-
tion controller should obtain the
consent of the individual or exercise
due diligence and take reasonable
steps to ensure that the recipient
person or organization will protect the
information consistently with these
Principles.

THE WHITE HOUSE

WASHINGTON

February 23,2012

Americans have always cherished our privacy. From the birth of our republic, we assured ourselves protection against
unlawful intrusion into our homes and our personal papers. At the same time, we set up a postal system to enable
citizens all over the new nation to engage in commerce and political discourse. Soon after, Congress made ita crime
to invade the privacy of the mails. And later we extended privacy protections to new modes of communications
such as the telephone, the computer, and eventually email.

Justice Brandeis taught us that privacy is the “right to be let alone,” but we also know that privacy is about much
more than just solitude or secrecy. Citizens who feel protected from misuse of their personal information feel free
to engage in commerce, to participate in the political process, or to seek needed health care. This is why we have
laws that protect financial privacy and health privacy, and that protect consumers against unfair and deceptive
uses of their information. This is why the Supreme Court has protected anonymous political speech, the same right
exercised by the pamphleteers of the early Republic and today’s bloggers.

Never has privacy been more important than today, in the age of the Internet, the World Wide Web and smart phones.
In just the last decade, the Internet has enabled a renewal of direct political engagement by citizens around the
globe and an explosion of commerce and innovation creating jobs of the future. Much of this innovation is enabled
by novel uses of personal information. So, it is incumbent on us to do what we have done throughout history: apply
our timeless privacy values to the new technologies and circumstances of our times.

| am pleased to present this new Consumer Privacy Bill of Rights as a blueprint for privacy in the information age.
These rights give consumers clear guidance on what they should expect from those who handle their personal
information, and set expectations for companies that use personal data. | call on these companies to begin immedi-
ately working with privacy advocates, consumer protection enforcement agencies, and others to implement these
principles in enforceable codes of conduct. My Administration will work to advance these principles and work with
Congress to put them into law. With this Consumer Privacy Bill of Rights, we offer to the world a dynamic model of
how to offer strong privacy protection and enable ongoing innovation in new information technologies.

One thing should be clear, even though we live in a world in which we share personal information more freely than in
the past, we must reject the conclusion that privacy is an outmoded value. It has been at the heart of our democracy
from its inception, and we need it now more than ever.

https:.//obamawhitehouse.archives.gov/sites/default/files/privacy-final.pdf



Federated Learning and Security

> Eliminates data collection in the cloud

» Helps eliminate risk associated with centralized data
» Warrants, rogue employee, curious executives ...
> “Datais a toxic asset” -- Bruce Schneier

» Privacye
» Does not really protect user privacy

» Model may still reveal user information
» Adversarial users could manipulate protocol to learn about other users

» Learning procedure (e.g., FedAvQ) leaks raw data
> Adversarial cloud/coordinator can extract data

> Solutions?¢



Secure Multi-Party Computation

» Family of cryptographic protocols designed to allow
multiple parties 1o compute a function over their inputs

while keeping their inputs private

| 4l

z=f(x1,...,T,) in\z

e Ln
<



MPC Example: Additive Secret Sharing

Random
Numbers f($1,$2,$3) = L1 + o —|—$3
%[ Secret Shares ]
—dL1 — 71,1 — 71,2
Note that:

» Neither person 2 or person 3
knows the value of x;.

> If they collude, they cannot
figure out the value of x;.




MPC Example: Additive Secret Sharing

Random
Numbers f (il?l, L2, 5133) = 1 + T2 + L3
o\ \Tq
—T1 =711 T2 F@ET s+ 73




MPC Example: Additive Secret Sharing

f (56175627373) — L1 —|—ZC2 —|—.CE'3

Parties all share their partial sums




MPC Example: Additive Secret Sharing

f (56175627373) — L1 —|—ZC2 —|—.CE'3

Rearranging and cancelling out terms:




Secure Multi-Party Computation

» Family of cryptographic protocols designed to allow
multiple parties 1o compute a function over their inputs

while keeping the inpufts private

| 4l

z=f(x1,...,T,) in\z

» More sophisticated protocols

e Ln

M-

» Shamir secret sharing: uses evaluation of random polynomials

» Supports addition and multiplication

» User specified fault tolerance (not all parties must participate)

» Privacye



MPC Example: Additive Secret Sharing

f (56175827:63) = T1 + T2 + T3
L1
S =Xx1+ X2+ T3  Note that:

r1.1,71.2 » Neither person 2 or person 3
’ ’ knows the value of x;.

o > It they collude, they cannot
s = x1+ Ty + 23 figure out the value of x;.
r2.1,72,2 The computation still reveals
information.

=
w

S In secure MPC we assume that each
5 L1 _I_ L2 _|_ L3 party is willing to share outcome of
r3,1,73,2 computation.




Differential Privacy

» Guarantees that only a limited amount of information is
leaked about data involved in a computation.

» Formalized in 2006 by Dwork, McSherry, Nissim, and Smith
» Builds on randomized response (1965)

Have you cheated on an exame

obs=0.5+0.5p
p=(obs-0.5) /0.5

p/_
Tails > Answer Honestly _

(1-p)

Flip Coin
0.5




Differential Privacy

» Guarantees that only a limited amount of information is
leaked about data involved in a computation.

» Formalized in 2006 by Dwork, McSherry, Nissim, and Smith
» Builds on randomized response (1965)

Definition 2.4 (Differential Privacy). A randomized algorithm M with
domain NI*l is (g, §)-differentially private if for all S C Range(M) and
for all z,y € NI¥l such that ||z — y||; < 1:

Pr[M(x) € S] < exp(e) PriM(y) € 8] + 9,

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Definition 2.4 (Differential Privacy). A randomized algorithm M with
domain NI*! is (g, §)-differentially private if for all S C Range(M) and
for all z,y € NI*! such that ||z — y||; < 1:

Pr[M(z) € S] < exp(e) PrfM(y) € S| + 6,

x,y €N ] Represent databases x and y as histograms.

|z —y||1 < 1: Databases differ by only one record.

60 = 0: Special case, (€)-differential private.

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Achieving Differential Privacy

> Several mechanisms built around the addition of noise

» Laplace mechanism is most common/simple



Laplace Mechanism

Definition 3.1 (/;-sensitivity). The /;-sensitivity of a function f :
NIl — RF is:

Af = max [f(@)— fW)lh.

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Laplace Mechanism

Definition 3.1 (/;-sensitivity). The /;-sensitivity of a function f :
NIl — RF is:

Af= max |[f(z) - f@)lh

Definition 3.3 (The Laplace Mechanism). Given any function f :
NI*l — R*. the Laplace mechanism is defined as:

Mrp(z, f(),e) = f(z) + (Y1,...,Yx)

where Y; are i.i.d. random variables drawn from Lap(Af/e).

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Definition 3.3 (The Laplace Mechanism). Given any function f :
NI*l — R*. the Laplace mechanism is defined as:

ero Mean

Mi(z, f(),€) = f(2) + (Vi,..., V) et = AUNTEE

where Y; are i.i.d. random variables drawn from Lap(Af/e).

Samples from Laplace distribution.

o5 F T T T 1 o bot — Proof
AT ﬂ EE: Pr (f( ) + Lap (—f> :z)
ol _ Pr(f( ) + Lap (—f) :z)

0.2

0.1

0

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Definition 3.3 (The Laplace Mechanism). Given any function f :
NI*l — R*. the Laplace mechanism is defined as:

ero Mean

Mi(z, f(),€) = f(2) + (Ya,..., V) et —AUNTEE

where Y; are i.i.d. random variables drawn from Lap(Af/e).

Proof

Pr(f( )+Lap( f):z) _Pr(Lap

(
Pr (f(y) + Lap (22) = =) Pr(Lap

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Proof Pr (f( )—I—Lap( f) z) _Pr (Lap (AT
Pr (f(y)—l—Lap( f) z) N Pr (Lap (%) zz—f(y))

Product of Kiid draws from _ ﬁ eXP(_sf(xA)}_zi )
A Laplace Distribution '

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Proof Pr(f( )+Lap( f):z) _Pr(Lap( -
pr (o + oo (32) =)~ e (Lap (32) == 70)

Product of K iid draws from ﬁ exp(— Q=)
A Laplace Distribution ( elf(y)i—zi )

Algebra = [ exp (g(m )i _zz|A}|f( z)i —Zz|)>

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Proof

Pf(f( )—I—Lap( f):z) _Pr(Lap(AT
Pl“(f(y)+Lap( f) Z) _Pr(Lap(%)zz—f(y))

Product of K iid draws from
A Laplace Distribution

|

—
/—\

Q)
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p—t

Algebra ( e(|f(y)i — 2] — | f(x)s _Zz|)>

Af
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Triangle Inequality
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hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Proof

Pf(f( )—I—Lap( f):z) _Pr(Lap(AT
Pl“(f(y)+Lap( f) Z) _Pr(Lap(%)zz—f(y))

Product of Kiid draws from _ ﬁ eXp(_sf(xA)}_zz )
A Laplace Distribution exp(_sf(yA)}—zz )

k
Algebra = J] ex p( (/) —zzlA—f|f< z); —zz|>>
Triangle Inequalit - elf(x)s — f(y)il
9 9 Yy < Hexp( A )

~
|
[t

Algebra = exp ( £ () - f(y)lll)

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Proof

Af = max

lz—yll1=1

Pf(f( )—l—Lap( f):z) _Pr(Lap(AT
Pl“(f(y)+Lap( f) Z) _Pr(Lap(¥)=z—f(y))

Product of K iid draws from
A Laplace Distribution

|
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Algebra =
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k
Triangle Inequality < TT exp ( 28 = fW)il
e (755, 7)
1£(2) - F @)l Algebra = exp (5' ||f(97)A; f(y)||1)

Definition of Sensitivity < exp(e),

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Proof Py

< exp(e),

Definition 2.4 (Differential Privacy). A randomized algorithm M with
domain NI¥! is (g, §)-differentially private if for all S C Range(M) and
for all z,y € NI such that ||z — y||; < 1:

Pr[M(x) € 8] < exp(e) Pr[M(y) € S| + 6,

hitps://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf



Differential Privacy: Issues

> Privacy-Utility Tradeoff: What are the right values of (€,8) to
balance privacy and accuracye

» Privacy Budget: each differentially private operation on
the data leaks information.
» At some point you must stop querying the data



Trusted Execution Environments

» Hardware primitives that isolate data and computation
from other processes, the OS, and even hardware
attacks while attesting to the correct execution.

> isolation: typically encrypt data in memory and prevent other
processes including the OS from observing computation

> attestation: verify the integrity of the computation as well as all
iINpufs.

» Examples:
> Intel SGX (Software Guard Extensions)
» AMD Memory Encryption
» ARM TrustZone



Trusted Execution Environments

» Advantages
» Minimal impact on compute performance.
> Support for fully generic computation
» Leverage industry standard encryption rather than PHE/FHE

» Disadvantages

» Need to trust hardware manufacturer

» Sign certfificates and verify code

» Bugs: exploits like Spectre and Meltdown can compromise SGX
» Susceptible to a wide range of side channel attacks

» Current implementations have some performance limitations

» SGX Enclave Page Cache (EPC) is limited to ~TO0OMB - very slow to move
data in and out of EPC

» Single socket desktop processor



Reading This Week



Reading for the Week

» Communication-Efficient Learning of Deep Networks from
Decentralized Data (Alstat'17)

» Infroduced Federated Learning setting and federated averaging

» Privacy Accounting and Quality Control in the Sage Differentially
Private ML Platform (sosp'19)

» Differential privacy ML platform which doesn’t expire

Slalom: , fiable and Private Execution of Neural Networks in
Trusted Hardware(ICLR'19)

» Combine trusted execution environment (SGX) with u
inference

ware (GPU) for

» Robust Physical-World Attacks on Deep Learning Models [CVPR' 18]
» Highly influential paper on on adversarial attacks on computer vision models



https://arxiv.org/pdf/1602.05629.pdf
https://arxiv.org/pdf/1909.01502.pdf
https://arxiv.org/abs/1806.03287
https://arxiv.org/abs/1707.08945

Communication-Efficient Learning of

Networks from Decentralized

» Early work framing the federated setting
> |ldentified several key challenges: comm., non-iid, participation

Deep

DATA (AlStats'17)

» Advocating for distributed model averaging in the

federated setfing

» Counter intuitive (at the tfime) 1.2]

L 1§

» Non-iid assumption
» Non-convexity of deep learning

loss

0.7

0.6f
0.5}

0.4

Independent initialization
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Privacy Accounting and Quality Control in the
Sage Ditterentially Private ML Platform (SOspP’19)

» Platform for differential privacy
accounting that interposes in
existing ML frameworks.

» Addresses the problems:

» Managing a privacy budget and
extending the privacy budget

» Balancing privacy and accuracy
objectives with retraining

> Big ldea: Break data info blocks
with independent privacy
budgets

[

1 2
. (o) Q
Privacy-Adaptive Training "°U'TY {e developer T oS
REJECT/timeout § S 5

(7]
(¢,5)-DP Training Pipeline o o ‘z
5 2D -
(€/3.0)DP || (/3 5)-pp || E30DP | |accEpT||| BWE
il Trainin Shasd fL o
processing 9 Validation ] §

'c —

()]
RETRY 2338

N =

request dataset dataset, €, —
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Slalom: Fast, Verifiable and Private Execution of
Neural Networks in Trusted Hardware (ICLR'19)

» Use cryptographic
technigues o combine
TEE with untfrusted

accelerator during TEE(F, 2,) S(F)
Inference.

Preproc: for i € [1,n] do r; & Fi , Ui =1, W;

> Big Idea: Leverage for i € [1,7] do

linearity operators to T : -
compute over pre- N Wi
CompU'I'ed nO|Se assert Freivalds(y;, x;, W;)

Tit1 = o(yi)
return y,,




BDlelal=)



