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Security & Privacy Problems

WorldViews

Syrian hackers claim AP hack that tipped stock
market by $136 billion. Is it terrorism?
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We Are in Adversarial Environments




Adversarial Attacks

First robust physical attack
First spatial attack
First distributed attack on FL

Preprocessing,
Feature Extractio

* Robust feature selection

* Certified robust against
transformed instances

* Feature valuation
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* First certified defense against
semantic transformations

* Tight bounds for adv
transferability

e Adv audio detection (Watson)
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Game theoretic robust

optimization

* Learning property based
robust ML (Intrinsic)

* Knowledge enabled robust

ML pipelines (extrinsic)

e Data valuation

* Information theory
* Causal representation

»
Privacy preserving ML Learning and
Data Generation

First O(nlogn) Shapley value
First fairness on VFL
First de-toxicity pip. on NLP

First model inversion attack
with partial info.

First scalable DP data
generative model




Tradeoff between robustness and privacy
Privacy indicates certified robustness
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Uncovering connections
with robustness/privacy

Robustness and generalization
indicates each other

Certified ML generalization




Physical Attacks In Practice

Digital World:

V4 o0 40001

Predicted as Predicted as
“cat” Perturbation “dog”

Physical World:




However, What We Can See Everyday...
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The Physical World Is... Messy

Varying Physical Conditions (Angle, Distance, Lighting, ...) Physical Limits on Imperceptibility
a

Image Courtesy,

Fabrication/Perception Error (Color Reproduction, etc.) Background Modifications™ opena

Digital Noise What is What a camera
(What you want) printed may see




An Optimization Approach To Creating
Robust Physical Adversarial Examples

arg(gnin MOy + I (fo(x +6),y7)

[

Perturbation/Noise Matrix Adversarial Target Label

Lp norm (L-0, L-1, L-2, ...)  Loss Function

argmm A|[6]], + kZJ fol( x + 4),

@!
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Optimizing Spatial Constraints
(Handling Limits on Imperceptibility)
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Subtle Poster

Mimic vandalism

“Hide in the human \ &

Camouflage Sticker seyche”




Subtle Poster

Subtle Poster Camo Graffiti

Camo Art

Camo Art

Lab Test Summary
(Stationary)

Adversarial Target:
Stop Sign -> Speed Limit 45
Right Turn -> Stop Sign
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Art Perturbation




Subtle Perturbation




Physical Attacks Against Detectors




Physical Attacks Against Detectors

16



Physical Adversarial Stop Sign in the
Science Museum of London




Physical Adversarial Attacks
Against LIDAR Sensor

Goal: we aim to generate physical against
LiDAR system.

\_ LiDAR




Adversarial Point Clouds

PointNet is widely used including in autonomous
driving systems to process Lidar point cloud data

Perturbation on point cloud
— Points shifting

— Independent points adding
— Adversarial clusters

— Adversarial objects

Adversarial objectives
min D(z, z'), . Fla | =17

1 2
Dc(S,S8) = E min ||z —
C( ) HS/H() -] €S H yHQ

2 2
Du(S,S8') = max min ||z — y|i;

min f(z') + X - Z Dpar(Si) + - De(So, Si)
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Adversarial Perturbation on Shape/Texture

(b) S | NMR

(b) Table | Shape

(c) All | Shape

(c) S | Mitsuba

(d) Table | Texture (e) All | Texture

(d) S*V INMR  (e) S*1 | Mitsuba
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Adversarial 3D Meshes

* 934 : hotdog



Real-world Challenges

* Physical LIDAR equipment
* Multiple non-differentiable pre/post-processing stages

A
* Manipulation constraints [(«@») %}
LiDAR

— Limited by LiDAR
— Keeping the shapeplausible and smooth adds additional constraints
e Limited Manipulation Space

— Consider the practical size of the object versus the size of the scene that is
processed by LiDAR, the 3D manipulation space is rather small (< 2% in our
experiments)

Featur_e Clustering
generation v

L J l J

: | |
Point cloud X Feature map x Model output
b Pre-processing @xwxt) (5 X Wx H) Postoracassiig

— Transformation *» ROl filtering Box building = Tracking —>

Perceived
obstacles

Sensor data P



Pipeline of LiDAR-adv

Input: a 3D mesh + shape perturbations
Non-differentiable Pre/Post Processing

Target: fool a machine learning model to ignore the object
and keep the shape printable

Benign object LiDAR Point cloud AV perception

il A

. —> (((@))) —>

Adversarial object LiDAR

Adversarial point cloud AV perception

‘ | Not
_'I]Egﬁll]—’ x detected

A

- (-
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Physical-World Adversarial Attack

* Physical world experiment setup

— A real vehicle equipped with a Velodyne HDL-
64E LiDAR and camera

/

LiDAR and
camera

Road & car with LiDAR and camera Benign Adversarial
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MSF: widely recognized as a general defense strategy
against existing attacks on AD perception

10.3.2  Sensor-Level Defenses. Several defenses could be adopted
against spoofing attacks on LiDAR sensors:

Detection techniques. Sensorfusion;which intelligently com=
bines data from several sensors to detect anomalies and improve
performance; could be adopted against LiDAR spoofing attacks. AV
systems are often equipped with sensors beyond LiDAR. Cameras,
radars, and ultrasonic sensors provide additional information and
redundancy to detect and handle an attack on LiDAR.

[Cao et al. CCS'19]

As the system’s autonomy increases, so does the concern
about its security. In modern vehicles, a malicious attacker may
deceive the controller into performing a dangerous action by
altering the measurements of some sensors [1], [2]. Depending
on the attacker’s goal and capabilities, the consequences may
range from minor disturbances in performance to crashes and
loss of human lives. Consequently; performing attack=resilient

sensor fusion is essential for the safety of such systems.

[lvanov et al. DATE’14]

5.2 Potential Countermeasures
Redundancy and Fusion: If a vehicle is equipped
an overlapping field of view, the effect of saturating
gateditorarcertainvextenty However, this directly inc
a definitive solution because attackers can blind mu
Besides, it is also not easy to detect spoofing, whe
non-overlapped zones. Likewise, the fusion of multi
be an ultimate solution either. Radars [44], cameras
sors [44] have all been revealed to be vulnerable to «
spoofing.

[Shin et al. CHES'17]

an interval of all possible values.

same physical variables in the presence of transient faults. The
existing methods do not work well when an attacker wants to
keep undetected by maximizing the interval of the sensor, for
example, stealth attacks. We'proposed anovel'approachiforattack
detection which was presented based upon fusion intervals and
past'measurements. In this approach, we added a virtual sensor,
and used pairwise inconsistencies between sensors to detect and
identify attacks. The algorithm was evaluated on a real-world case
study. The results demonstrated that the proposed algorithm out-
performs the existing algorithms in various attack scenarios. Our
future work is to explore how to further improve the recognition
rate, especially for stealth attacks, and can identity as soon as

[Yang et al. FGCS'18]

2.1 System Model and Current Approach

‘We consider a system with n sensors measuring the same
physical variable. As mentioned above, we assume abstract
sensors; therefore, each sensor provides the controller with
We assume the system
queries all the sensors periodically such that a centralized
estimator receives measurements from all sensors, and theén
performs attack detection/identification and sensor fusion
(SF). We now explain the current approach to attack de-

tection, referred to herein as a SF-based detector, before
providing the improved version addressed in this paper.

[Park et al. ICCPS’15]
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Attack Generation against MSF

Target road Rendering

Pre-Processing

MSF Algorithm

LiDAR
.| perception

Final adv. e M =———>| | LiDAR rendering LiDAR pre-processing
. A
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5° 10° 15° = Tale Camera rendering Camera pre-processing
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» perception
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End-to-End Attack Simulation

* Perform end-to-end attack evaluation on Baidu Apollo-5.0 and LGSVL
simulator

Single lane road map Vehicle Benign Adversarial

Benign case Adversarial case

31




LGSVL Apollo

Control Experiment

Drivi facing the adversarial object



Physical World MSF-based Attacks

ADV Object
[
; 72N

| : -’((( o o )))

https://aisecure.github.io/BLOG/MRF/Home.html

33


https://aisecure.github.io/BLOG/MRF/Home.html

Possible Vulnerability Disclosure

* As of 4/8/21, informed 32 companies developing/testing AVs
* 12 has replied so far and have started investigation
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Certified Robustness For ML

Robustness Verification Approaches
[
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https://sokcertifiedrobustness.github.io/

STOA Certified Robustness on MNIST

* On MNIST
— {,norm,r = 0.3
— SOTA Certified Robust Accuracy: 93.09%

— SOTA Empirical Robust Accuracy (against existing attacks):
96.34%

* https://github.com/MadryLab/mnist challenge

» Not much difference


https://github.com/MadryLab/mnist_challenge

STOA Certified Robustness on CIFAR

On CIFAR-10
— {, norm, r = 8/255
— SOTA Certified Robust Accuracy: 39.88%

— SOTA Empirical Robust Accuracy (against existing attacks): 65.87%
* Leaderboard: https://robustbench.github.io/

— Y norm, r = 2/255
— SOTA Certified Robust Accuracy: 68.2%

» Still a gap


https://robustbench.github.io/

STOA Certified Robustness on ImageNet

On ImageNet
— £, norm, r = 2.0
— SOTA Certified Robust Accuracy: 27%

» Still hard (also for empirical robustness)

* We maintain the SOTA certified robsutness @
https://github.com/AIsecure/Provable-
Training-and-Verification-Approaches-
Towards—-Robust-Neural-Networks
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Robust ML Pipeline with Exogenous
Information

* Vulnerabilities of statistical ML models: pure
data-driven without considering exogenous

information that cannot be modeled by data
— Intrinsic information (e.g., spatial consistency)
—Extrinsic information (e.g. domain knowledge)

COMMUNICATIONS s

nnnnn
olanyi's Revenge and Al's New Romance with Tacit... / Full Text

IIIIIIIII

Polanyi's Revenge and Al's New Romance with Tacit Knowledge

By Subbarao Kambhampati
?:r:::;;::;g;s of the ACM, February 2021, Vol. 64 No. 2, Pages 31-32 EtHaEH The NetHaCk Cha”enge:

mmmmmmmmmmm }.("H —LrioLn Dungeons, Dragons, and Tourists
vewss: B 0 @ B | e @ 9 0 @ B o NEURIPS 2021 REPORT
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Certified Robustness for Sensing-
Reasoning ML Pipelines

* Can we reason about the robustness of an end-to-end ML pipeline
beyond a single ML model or ensemble?

Sensing Reasoning
(Deep Neural (Markov logic network,
Networks, etc.) Bayesian network, etc.)
—> Neural Network 1
ﬁ——» Neural Network 2 | Q
| Y
d——> Neural Network 3 \| Knowledge
\ O e EEE R PR ! Base
lInl], < ¢ |lel|, < Cs |181], < Cg
Input Sensing End-to-end
L, ——
Perturbation Robustness Robustness

* Intuition: It is hard to attack every sensor in and still preserve their
logical relationship

* Goal: Upper bound the end-to-end maximal change of the marginal
probability of prediction

* Challenges: Solve the minmax for the pipeline




Challenges and Opportunities

* Challenges: Compared with neural networks

whose inference can be executed in polynomial
time, many reasoning models (e.g., MLN) can be

#P-complete for inference.

* Opportunities: Many reasoning models define a
probability distribution in the exponential family,
which provides functional structures for solving
the min-max problem.




(a) Sensing Component

(c) Reasoning Comp. (Factor Graph)

Dog Sensor (—@) Paog(X) Ting 2309
Cat Sensor —>' Pcat X) fcat pcat fc=>a d=a
Animal Sen. _’. Panimat (X) fanimat
Vanimal
(b) MLN Program
predicates factor factor function weight
Dog(X); Cat(X); Animal(X) Paog(X)
weight rule =
10.5 Dog(X)=>Animal(X) fasa fasa(d@)=1-d(1-a) [10.5
5.3 Cat(X) => Animal(X) fesa  fesalc,a) =1 —c(1—a) 5.3 wH

Two types of factors: Interface factors G and Interior factors H

E[Rain ({0i(X) }iepm)] = Prlv = 1] 421 ({pi (X

Z1({pi(X) }ierm)
== Z exp {

cEX Ao (v)=1 G;€G

Z wag,o(x;) + Z waH(U(VH))}

HeH

Marginal prediction

Victm)/Z2({pi(X) Ficp ]/probablllty
Zr({pi(X) }iem)
= ZeXp{ Z we,; o (Ti) + Z waH(U(‘_fH))}

cED G; €0 HeH
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Hardness

Definition 2 (COUNTING). Given input polynomial-time computable weight function w(-) and query function
Q(-), parameters «, a real number €. > 0, a COUNTING oracle outputs a real number Z such that

1_€c< S1+€C-

Z
~ Eonn, [Q(0)]

Definition 3 (ROBUSTNESS). Given input polynomial-time computable weight function w(-) and query
function Q(-), parameters «, two real numbers ¢ > 0 and § > 0, a ROBUSTNESS oracle decides, for any
o/ € PI™ such that || — o/|| < ¢, whether the following is true:

[Eonr, [Q(0)] = Egnn, [Q0)]| < 6.

Theorem 4 (COUNTING <, ROBUSTNESS). Given polynomial-time computable weight function w(-) and query
function Q(-), parameters « and real number €. > 0, the instance of COUNTING, (w, Q, o, €.) can be determined
by up to O(1/e?) queries of the ROBUSTNESS oracle with input perturbation ¢ = O(g,.).

Theorem 5 (MLN Hardness). Given an MLN whose grounded factor graph is G = (V, F) in which the weights
for interface factors are we, = logp;(X)/(1 — p;(X)) and constant thresholds ¢, C, deciding whether

v{ei}ie[n] (VZ |6i| < C) -
|ERMmLN({Pi(X)}iem)) — ERmon ({Pi(X) + €ibicpn)| < 6
is as hard as estimating ER . ({pi(X) }icjn)) up to €. multiplicative error, with €; = O(e.).
44




Robustness of the Reasoning Component

Can we efficiently reason about the provable robustness for the reasoning component
when given an oracle for the statistical inference?

Lemma 6 (MLN Robustness). Given access to partition functions Z ({pi(X)}ic(n)) and Zo({pi(X) }icpn)), and
a maximum perturbation C, Ve, ..., €,, if Vi. |e;| < C, we have that Y\, ...,\,, € R,

max InE[Ryrn({pi(X) + €i}icn)]

{les|<C}
{€i}iem)) — min {Eg}ié[n])

< max Z
{leil<C} {le;l<C}

Oracle inference
min _ InE[Ran({pi(X) + 6i}z‘e[n])]

{le;|<C}
>  min /ZV €ific[n]) — Max 2 521. -
2 (oo, Zalledier) —  max Zo({eibiem)

where

[Z({Ei}ie[n]) =In Z,({pi(X) + €i}icin) + Z Aiﬁi-]

1. When \; > 0, Z({Ez’}ie[n]) monotonically increases w.r.t. ¢;; Thus, the maximal is achieved at ¢; = C

and the minimal is achieved at ¢, = —C. When \; < —1, Z({ei}ie[n]) monotonically decreases w.r.t. ¢;;
Thus, the maximal is achieved at ¢, = —C' and the minimal is achieved at¢; = C.

2. When \; € (—1,0), the maximal is achieved at ¢; € {—C,C'}, and the minimal is achieved at ¢; €

: 7 Iz : = e (1—pi(X))(pi(X)+e:)
{—C,C} or at the zero gradient of Z,({€;},c},)) with respect to ¢ = log [ - (ﬁ()(l_pf(x)_si) } , due to

the convexity of ZNT({EZ-}Z-GM) in €;, Vi. 45




Beyond Markov Logic Networks

* Bayesian networks with tree structures

* Bayesian networks with binary tree structure or
a 1-NN classifier — tight upper and lower bound

of reasoning robustness



Example: PrimateNet (ImageNet)

PrimateNet. The knowledge structure of blue arrows represent the Hierarchical
rules between different classes, and red arrows the Exclusive rules. (Some

exclusive rules are omitted)
——— Hierarchy Edge
«—— Exclusion Edge
Monkey
/ \

&

P0ld world Monkey' New world Monke

il ‘?’}:Ape\ - , ./ / r % \. / I S T i

808 0E i g
Slamang Baboon Langur Colobus  Guenon Macaque Marmoset Capuchin Howler Squirrel

e Hierarchy edge u = o: If one object belongs to class u, it
should belong to class v as well:

Madagascar  Indri
Cat Monkey

Orangutan  Gorilla Chimpanzee Gibbon

xy N x, = False

e Exclusion edge u & v: One object couldn’t belong to class u and
class v at the same time:

xy A xp = False - 47



Table 1: Benign accuracy (i.e. C; = 0, @ = 0) of models with and without
knowledge under different smoothing parameter o evaluated on PrimateNet.

o | With knowledge | Without knowledge

0.12 0.9670 0.9638
0.25 0.9612 0.9554
0.50 0.9435 09571

Table 2: Certified Robustness and Certified Ratio with different perturbation
magnitude Cy and sensing model attack ratio & on PrimateNet. The sensing
models are smoothed with Gaussian noise € ~ N(0, ¢%I) with different
smoothing parameter o.

(a) o=0.12 (c) o =0.50
With knowledge Without knowledge With knowledge Without knowledge
Cr I a Cert. Robustness Cert. Ratio | Cert. Robustness Cert. Ratio Cy l « Cert. Robustness  Cert. Ratio | Cert. Robustness Cert. Ratio
10% 0.8849 0.9419 0.5724 0.5724 10% 0.8288 0.9449 0.4762 0.4762
0.12 20% 0.8078 0.8609 0.5717 0.5717 0.50 20% 0.7407 0.8488 0.4749 0.4749
30% 0.7508 0.7988 0.5706 0.5706 30% 0.6907 0.7968 0.4736 0.4736
50% 0.6236 0.6647 0.5706 0.5706 50% 0.5581 0.6395 0.4635 0.4635
10% 0.7888 0.8428 0.2342 0.2342 10% 0.7307 0.8448 0.1679 0.1679
0.25 20% 0.6226 0.6657 0.2320 0.2320 1.00 20% 0.5285 0.6336 0.1615 0.1615
E 30% 0.5225 0.5596 0.2309 0.2309 ’ 30% 0.4347 0.5375 0.1612 0.1612
50% 0.3594 0.3824 0.2268 0.2268 50% 0.2624 0.3318 0.1584 0.1584
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Example: (NLP) Relation Extraction Task

Table 3: (NLP) Certified Robustness and Certified Ratio for approaches
when all sensing models are attacked.

With knowledge Without knowledge
Cs | Cert. Robustness Cert. Ratio | Cert. Robustness Cert. Ratio
0.1 1.0000 1.0000 0.9969 0.9969
0.5 1.0000 1.0000 0.9474 0.9474
0.9 0.5882 0.5882 0.3839 0.3839
| Wrong lﬂgr( orrect , ] ]
. 0.8 knowl(‘,ﬂéh 0.8 0.8 0.8
B 0.6 0.6 0.6 0.6
;'_- 04 B thout 04 04 0.4 |
“ 02 knowledge I 0.2 0.2 0.2 ‘ |
0 = - ; 0 n_n - 0 E " ! o A m _ ,
-1 () 1 -1 () 1 -1 0 1 -1 1
P[correct class] — P[top wrong class] P[correct class] — P[top wrong class] P[correct class] — P[top wrong class] P[correct class] - P[top wrong class]

(@) Attack all sensors, C; < 0.1 (b) Attack all sensors,C; < 0.2 (c) Attack all sensors,C; < 0.3 (d) Attack all sensors,C; < 0.9
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Example: Knowledge Enhanced ML Pipeline
against Diverse Adversarial Attacks

 Example: Robust road sign recognition

* The output of ML models are modeled as input random
variables for reasoning

* Permissive knowledge: s infersy
* Preventive knowledge: y infers

Main Task (Model) Output Variable
(s,0)=l[s=o0
Stop Sign Dy f [ ]
Detection 1sStopSign

o
isStopSign

| (TP, “STOP” Pattern S f(s,0) =1[s= o]
S > Detection SSTOP O
) " ’l
- factor DRomain Knowledge
Octagon J ; :
Detection isOctagon A stop sign is of
f(s,0) =1[o=s] an octagon shape.

Auxiliary Task T .
(Model) Input Variables

a




Knowledge Enhanced ML Pipeline against
Diverse Adversarial Attacks

* Lower bound of the pipeline accuracy

Theorem 1 (Convergence of AXEMIP), Fory € Y and D €
{Ds, D, }, let p,, p be defined as in Lemma 1. Suppose that
the modeling assumption holds, and suppose thatjj.q,. , >

0, forall K € {Z,J} and D € {Dy, Dy }. Then
I ) ) \ Ky, D consists of three terms:
A >1—E,, ,[exp (—2u2 p/v?)], Kd, D, KI,D,and ], D

measuring the contributions

from the main, permissive, and

2 — 2 .
- 4(log v O > + > (log vou(l = nck) ) preventative sensors.
]. — A0k kEZUT /\ek:(1 - Vak‘)

where v? is the variance upper bound to Plo = y|y, w] with

 The accuracy of pipeline is higher than that of the main sensor

Theorem 2 (Sufficient condition for AXEMLP > gmain) 7 p¢ 1
the number of permissive and preventative models be the YD = n+ 1 =a {a*,D —-1/2+ Z Ak, D — Z fk’,D}~
same and denoted by n such that n := |Z| = |J|. Note that kek kX!

the weighted accuracy of the main model in terms of its truth

rate is simply o, = ZDE{DMDQ} TpOx,p. Moreover, let If yp > /nil log l—la* for all D € {Dy,D,}, then

K,K' € {Z,J} with K # K' and for any D € {Dy, D, }, AKEMLP <, pmain_
let




Experimental Results

® Main = KEMLP 60 60

2 - -
% 100 E ..E 50 50
g 8o 5 2 40 KEMLP better 4 KEMLP bett
£ 5 g . etter etter
5 60 a8 30 than Main 3©¢ than Main
% - © 20 20
40 - 3 TR I I | | | | l 10 | I | I
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Main Models Attacks Attacks
(a) Clean Accuracy (KEMLP vs. (b) Robust Accuracy Improvement (c) Robust Accuracy Improvement
Different Main Models) (KEMLP over AdvTrain (£¢=8)) (KEMLP over DOA (5x5))

(a) Clean accuracy and (b) (c) robust accuracy improvement of KEMLP (o = 0.5)
over baselines against different attacks under both whitebox and blackbox settings.



Robustness of KEMLP against

Physical Attacks

Model performance (%) under physical attacks (o« = 0.4). Performance gain and loss of KEMLP over baselines are highlighted.

Main KEMLP

Clean Acc | Robust Acc | W-Robust Acc Clean Acc Robust Acc | W-Robust Acc

GTSRB-CNN 100 5 52.5 100(£0) 87.5(+82.5) | 93.75(+41.25)
AdvTrain (e = 4) 100 12.5 56.25 100(£0) 90(+77.5) 95(+38.75)
AdvTrain (e = 8) 97.5 37.5 67.5 100(+42.5) 90(-+52.5) 95(+427.5)
AdvTrain (e = 16) 87.5 50 68.75 100(+12.5) 90(+40) 95(+26.25)
AdvTrain (e = 32) 62.5 32.5 47.5 100(+37.5) | 90(+57.5) 95(+447.5)
DOA (5x5) 95 90 92.5 100(+5) 100(+10) 100(+7.5)
DOA (7x7) 57.5 32.5 45 100(+42.5) | 100(+67.5) 100(-+55)




Robustness of KEMLP against Lp

Bounded Attacks

Table 2. Accuracy (%) under whitebox L attacks (o = 0.8)

Models | | e=0 e=4 e=8 e =16 e =32
GTSRB-CNN Main 99.38 81.22 61.16 37.73 6.30
KEMLP | 97.38(—2.00) 90.33(+90.11) | 77.88(+16.72) | 60.44(+22.71) | 35.52(+29.22)
AdvTrain (e = 4) Main 97.94 87.99 69.34 42.44 20.29
- KEMLP | 97.25(—0.69) 92.05(+4.06) | 80.76(+11.42) | 63.32(+20.88) | 40.43(+20.14)
AdvTrain (¢ = 8) Main 93.72 84.18 72.04 44.06 23.84
- KEMLP 96.48(+2.76) 92.10(+7.92) 84.08(+12.04) 63.58(+19.52) 40.66(+16.82)
AdvTrain (¢ = 16) Main 84.54 78.55 71.99 57.87 26.13
- KEMLP | 95.42(+10.88) | 92.70(+14.15) | 86.78(+14.79) | 72.48(+14.61) | 45.09(+18.96)
AdvTrain (¢ = 32) Main 74.74 70.24 65.66 56.58 36.06
= KEMLP | 94.86(120.12) | 91.69(+21.45) | 86.39(+20.73) | 76.05(+10.47) | 54.78(+18.72)
DOA (5x5) Main 97.43 57.97 29.84 9.44 3.01
KEMLP 97.09(—0.34) 86.16(+28.19) 71.53(+41.69) 53.37(+43.94) 34.75(+31.74)
DOA (7x7) Main 97.27 40.20 11.96 3.94 2.67
KEMLP | 96.99(—0.28) | 84.52(+44.32) | 70.47(+58.561) | 56.58(+52.64) | 45.73(+43.00)
Table 3. Accuracy (%) under whitebox unforeseen attacks (o = 0.8)
Clean Fog-256 Fog-512 Snow-0.25 Snow-0.75 Jpeg-0.125 Jpeg-0.25 Gabor-20 Gabor-40 Elastic-1.5 Elastic-2.0
p——— Main 99.38 59.65 3418 56.58 2451 55.74 27.01 57.25 32.41 s 24.31
i KEMLP | 97.38(—2.00) | 76.95(117.30) | 62.83(128.65) | 78.04(122.36) | 53.22(128.68) | 79.63(123.89) | 63.40(+36.39) | 80.17(+22.92) | 65.20(+532.79) | 69.34(+24.56) | 52.37(+23.06)
KTt Ted§ | 97.94 55.53 29.50 66.31 32.61 56.58 28.11 73.30 16.76 57.25 30.09
VTrain (€ = 4) " —EMLP | 07.25(—0.69) | 76.08(+2055) | 61.06(+32.16) | 8045(+14.14) | 57.84(125.23) | 84.23(+27.05) | 68.57(+40.16) | BLAB(+3.18) | 65.77(+19.01) | 7L.I9(+13.09) | 50.33(+20.21)
R [0 93.72 50.03 23.56 63.71 34.93 57.56 26.16 76.72 53.76 18.25 24.46
VTrain (€ = 8) - EMLP | 06.48(12.76) | 76.50(+26.56) | 63.97(+40.41) | SLA0(+17.60) | 57.07(+22.14) | 85.11(+2755) | 68.70(+42.51) | 85.20(+3.57) | 68.90(+15.19) | 68.78(+2053) | 49.31(+24.85)
AdvTrain (c — 16) | Main 84.54 47.92 19.75 66.16 37.60 66.56 34.23 78.01 64.33 55.48 32.28
VIrain (€ = 16) -pETp [ 0542+ 10.88) | 77.13(+20.21) | 64.38(+44.63) | BL.64(+15.18) | 58.20(+20.60) | 86.99(120.13) | 70.40(+36.17) | 87.42(+9.41) | 72.61(+8.28) | 6731(+11.83) | B0.28(+13.00)
prre——— 74.74 4871 22.84 61.78 38.91 63.58 43.49 70.37 65.20 54.58 39.45
VIrain (€ = 32) gEMTP [ 04.86(+20.12) | 79.22(13051) | 66.33(+ 43.10) | BL20(+19.42) | 64.53(+25.69) | 86.70(123.12) | 73.38(120.80) | 87.04(+16.67) | 74.92(+9.72) | 66.38(+11.80) | BA7T6(+1531)
T Main 97.43 58.00 32.69 61.19 28.31 1113 11.29 55.43 29.55 58.02 32.74
(5x3) KEMLP | 97.00(—0.31) | 76.85(118.85) | 63.07(130.38) | 78.78(+17.59) | 56.76(128.42) | 78.60(137.47) | 61.78(150.49) | 80.25(+24.82) | 63.80(134.34) | 72.69(114.67) | B7.51(124.77)
SEkiEy Main 97.27 59.88 38.01 62.47 30.17 23.46 3.65 54.58 27.29 56.33 30.97
(7x7) KEMLP | 96.99(—0.28) | 78.00(+18.21) | 62.76(124.75) | 79.68(117.21) | 58.26(128.00) | 74.25(150.79) | 61.39(157.74) | 79.06(124.48) | 62.29(+35.00) | 71.27(+14.94) | 55.00(124.12)




Robustness of KEMLP against
Common Corruptions

Table 4. Accuracy (%) under common corruptions (o = 0.2)

| Clean Fog Contrast Brightness
Main 99.38 76.23 57.61 85.52
CARRECNN KEMLP | 98.28(—1.10) | 78.14(+1.01) | 72.43(+14.82) | 89.58(+4.00)
T A=) Main 97.94 63.81 42.31 78.47
. KEMLP | 97.89(—0.05) | 70.29(+6.48) | 67.46(125.16) | 86.70(+8.23)
T —— Main 93.72 59.05 31.97 78.47
= KEMLP | 96.79(33.07) | 67.41(+8.36) | 66.69(134.72) | 85.91(+~7.44)
AdvTrain (c — 16) |__Main 84.54 56.58 34.31 78.01
viramte = 19) "KEMLP | 94.68(+10.14) | 66.80(+10.22) | 68.39(+34.08) | 86.14(+8.13)
: Main 74.74 50.87 30.45 71.30
AdvTrain (€ = 32) |—roT 5| 9T.46(516.72) | 64.94(+14.07) | 68.31(337.86) | 83.20(+11.90)
Main 97.43 73.95 62.24 83.92
DOAEE) KEMLP | 97.45(30.02) | 76.08(+2.13) | 74.38(+12.14) | 87.60(+3.0%)
Main 97.27 73.41 57.54 83.56
DRACXD KEMLP | 97.22(—0.05) | 76.00(32.59) | 72.40(+14.86) | 87.78(+4.22)




Thorough Robustness Evaluation and

Certification
e https://adversarialglue.github.io/

AdvGLUE Home  AdvExplore

AdvGLUE

The Adversarial GLUE Benchmark

What is AdvGLUE? Leaderboard

Adversarial GLUE Benchmark (AdvGLUE) is a AdVGLUE is an adversarial robustness evaluation benchmark that thoroughly tests and
comprehensive robustness evaluation benchmark that analyzes the vulnerabilities of natural language understanding systems to different
focuses on the adversarial robustness evaluation of adversarial transformations.

language models. It covers five natural language

understanding tasks from the famous GLUE tasks and is Rank Model Score

* https://crop-leaderboard.me/

CROP-LEADERBAORD Leaderboards Paper FAQ

) CROP-LEADERBOARD

A standardized benchmark for certified robustness of RL algorithms

The goal of CROP-leaderboard is to systematically certify the robustness of different RL algorithms based on certification criteria such as per-state action and the lower bound of

cumulative reward. The related paper can be found here. Game Scenario Possible Actions Reward M‘gity
i u are at the office late at O' Call the police ] =~
Available Leaderboards o e e e o -

nmotion in your boss’s

ice. After a while, you ] Go home and rest 0 5
| — ‘ - . ’ i 3 > (B
Game:  CartPole-vO Certification strategy: ~ LoAct Certify! o 2

1 enter his office, you find fh @ Take boss’s watch 0 8

od spatter and your boss <
CartPole-v0 ing on the floor—he’s been ‘

in! What will you do next? B Clean up his office 0 “a



https://adversarialglue.github.io/
https://crop-leaderboard.me/

Real-world Case: Autonomous Driving
Testing via Logic Reasoning

(a) (b) Latent Code
oeet ) Knowledge enabled safety-critical
o traffic scenario generation
PN Laentote (a) Train T-VAE model to learn the
lomaten ' o Nodetevel Knowodae | representation of structured data.
Root
o, - 5:3;;2:;22‘;@96 RS (b) Integrate node-level and edge-
S e (CE—— level knowledge for generation.
. ~ N [ N R
A Pedestrain 0, P (R)
(P node) 0‘ @ 0‘ @ i-i @‘ @
ao (T_I_raff(ijc)Light ® S ’.‘ S
un(?njmous vehicle - | A
-(/:\rt\ode) e i A 30 ‘__“
(m) I(ll'rr;eoli\;/)ant vehicle i A ‘
' By ; N
() :Talil:,:;hlde || ? !' ' @
O Bitioyehice | J \ AN y,
(a) Traffic-light (b) Pedestrain (c) Lane-changing

Causal relationship enabled safety-critical traffic scenario generation
The causal graphs are defined in the upper right for the three scenarios.




Testing-time Adversary:
Certifiably Robust FL (CRFL)

Model Updates

Union of local datasets in all clients

D :={S1,Ss,...,Sx}

D'~ D = {{&:}j_ }iLs

Backdoor Perturbation
D' = {5/17 SRR SlR—lv Sle
SR+17"'7SN}

® 6 o
dh abh a

Aggregated Model
. . . < ggreg
dh &b g

Sever

Clipping and
Perturbing

Poisoned local training datasets

Clipping and
Perturbing

Clean
Global Model

M(D)

Model
Closeness

M(D")
Poisoned
Global Model



Robustness Certification

D'—=D={{&}IL}ik1 = DrpMD)IpMD) &= hs(M(D); Zres) = hs(M(D); rest

Backdoor Perturbation Model Closeness Prediction Consistency
General Robustness Condition Robustness Condition in Feature Level
( ) 151l < RAD
R . —log (1 — (/P4 — \/ﬁ)z afa . -
RY (pevimin, SHI5)* < = - I > o ~tog (1- (/o - V75)?) 02,
S=il T 2 /20 R T
- t=t1:[+1 (M) (‘”> 1) 2RL% 3 (pivimiminas)® 11 (2@ (P_t) B 1)
- i=1 R i | 7t
Our certification is in three levels: Certified radius

feature, sample, and client.



Empirical Results

—log (1 —(/PA - \/P__B)2> ol

RAD = = T
2RL% 3 (pivimimingt)® 11 (2‘1’ (ﬁ—:) - 1)
i=1 t=tygy+1
Varying noise levels
1.0 0.9 0.8
---- 0 = 0, uncertified ---- 0 = 0, uncertified ---- 0 = 0, uncertified

o =0.005 ] os —— 0=0.005 07 —— 0=0.005
> 0 =0.010 I > —— 0=0.010 >0.6 — —— 0=0.010
© o =0.015 © 0 =0.015 = O s Ee 001015
5 : 5 - 505 §
o o =0.020 S o = 0.020 - S B St —— 0=0.020
s 0 =0.025 ] = o =0.025 - Ly
= 2 2
e £ £
! ot S

05
0.0 0.4
0 1 2 3 4 5 0 1 2 3 4 5 6
radius radius radius
MNIST LOAN EMNIST

*  When noise level is large, large radius is certified but at a low accuracy.
* The smoothing noise level control the robustness—accuracy tradeoff.
* Comparing the solid line with the dashed line for each color, we can see that the parameter smoothing

does not hurt the accuracy much.



PR el —

Tradeoff between robustness and privacy
Privacy indicates certified robustness

| Goal: Close the
Trustworthiness Gap

Robustness and generalization
indicates each other

Generalization

N=IN

Uncovering connections
with robustness/privacy

Certified ML generalization

Generalization enabled
privacy-preserving ML




Datalens: Scalable Privacy Preserving Training
via Gradient Compression and Aggregation

Goal: Differentially private data generative model for high-dimensional data
Overview:

1. Split the sensitive data into non-overlapped partitions to train teacher discriminators

2. Calculate the gradients of the teacher discriminators based on generated data
3. Differentially private gradient compression and aggregation
4. Train the student generator with the\aggregated gradient\

High dimensionality Differential privacy

Accessible by Adversary | Not Accessrble by Adversary \

|| Sensitive Data I

(1) Data Partitioning

Synthetlc Data . m H Partition 1 Partition 2 Partition n I‘
.I..

| L il
Student Data Generator " Teacher 1 Teacher 2 Teacher n
JTH“_.L iy | - -‘
( ! B o A , 1(3) Cradlent
1(4) radient Aggregation 1 ! Compression I
N P Compressed ] [ Compressed ] [ Compressed ]
I [ Aggregated Gradient ] - [ Gradient 1 Gradient 2 Gradient n I
‘ TopAgg: noisy gradient compression and aggregation
_ I | I | I | I | I | I | I | I | I | I | /

62



Datalens —TopAgg: Gradient Compression

e Gradients from different teacher discriminators

2 N

* For each teacher gradlent g( ) , TopAgg performs Gradient

Compression that compresses its dense, real-valued
gradlent vector into a Spdarse S|gn vector with k nonzero
entries:

1) Select top-k dimensions, and set the remaining dimensions to 0
2) Clip the gradient at each dimension with threshold ¢

3) Normalize the top-k gradient vector to get g( )

4) Stochastic gradient sign quantization

i)

L)

9; = 1g§>

2

~(7) 1, with probability
—1, with probability



Privacy Bound for Datalens

e At each training step, calculate the data-independent RDP bound

Lemma 1. For any neighboring top-k£ gradient vector sets G, G differing
by the gradient vector of one teacher, the /5 sensitivity for foum is 2k

Theorem 1. The TopAgg algorithm guarantees ()\,Qk)\/ 02) — RDP, and

thus guarantees (23 + 105_1{6 : 5) -differential privacy for all A > 1 and 6 € (0,1)

* Calculate the overall RDP by the Composition Theorem.
* Convert RDP to DP.



Convergence Analysis

1
* Each teacher model performs: /@ =5 2 £

n€[N]

* Update rule: wi=azi— - > (Q(clip(top-k(F, (x1) . ¢), &) + N (0, Ak))

n€|[N]

Theorem: (Convergence of top-K Mechanism w/ w/o Gradient Quantization)
after T updates using learning rate 77, one has:

min{c, 1} 1 . 2 : *
(%55 )ﬁ%mm{EIW(x»u E(V£(@0),) < min{adl®ed= KM} + Eydk + (f(a0) - 1(="))/(T7)
+ max{||o]* + [|o]|M, 2|0l } A2Ly(5° + min{c?, M?})

Bias of Top-K
compression

Tradeoff DP noise
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DP Generated Data Utility

Table 1: Performance of different differentially private data generative models on Image Datasets: Classification accuracy of the model
trained on the generated data and tested on real test data under different ¢ (§ = 107°).

N DC-GAN (¢ =) | ¢ | DP-GAN PATE-GAN G-PATE GS-WGAN DataLens
MNIST 68 |h| Gl oo obewm  odns s
Fashion-MNIST a0 (o] (B deil  oost oo e
CelebA-Gender 0 |56 G e oah el o
CelebA-Hair B hooiE| G bbe.  Gemr  Dee s
Places365 e o] G ivse  iae  fwe  omr

Datalens achieves the state-of-the-art data utility on high-
dimensional image datasets
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Data Utility (small privacy budget)

e £ <1

Table 2: Performance Comparison of different differentially private data generative models on Image Datasets under small privacy budget

which provides strong privacy guarantees (¢ < 1,5 = 107°).

p MNIST Fashion-MNIST

DP-GAN PATE-GAN G-PATE GS-WGAN Datalens | DP-GAN PATE-GAN G-PATE GS-WGAN Datalens
0.2 0.1104 0.2176 0.2230 0.0972 0.2344 0.1021 0.1605 0.1874 0.1000 0.2226
0.4 0.1524 0.2399 0.2478 0.1029 0.2919 0.1302 0.2977 0.3020 0.1001 0.3863
0.6 0.1022 0.3484 0.4184 0.1044 0.4201 0.0998 0.3698 0.4283 0.1144 0.4314
0.8 0.3732 0.3571 0.5377 0.1170 0.6485 0.1210 0.3659 0.5258 0.1242 0.5534
1.0 0.4046 0.4168 0.5810 0.1432 0.7123 0.1053 0.4222 0.5567 0.1661 0.6478

Faster convergence when the privacy budget is small
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Summary

Tradeoff between robustness and privacy
Privacy indicates certified robustness

Robustness /\ Privac
Y

N\=\_ & & M" N
Thread model \ / Unified privacy
/ \ / \

Goal: Close the
Trustworthiness Gap

DALAN

exploration attacks

Privacy-preserving data
generation

/ Privacy-preserving learning \

/ Game theoretic modeling \

/ Certified ML robustness \

Robustness and generalization Generalization enabled
indicates each other Generalization privacy-preserving ML

DALY

Uncovering connections
with robustness/privacy

/ Certified ML generalization \

Closing today's trustworthiness gap requires us to tackle these three grappled problems
in a holistic framework, driven by fundamental research focusing on not only each
problem but more importantly their interactions.
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