
Google Borg

Nathan Pemberton
September 26, 2016

Boring Stuff

The What’s and Why’s

● What is it for? -> Sharing clusters among many users
○ Clusters are O(10k) nodes, some are “much bigger”

● Why is it new? -> Home-grown at Google, needed scale,
backwards compatibility, and control

● Why should you care? ->
○ Led to Kubernetes (which you can download and use)

○ Google sees unique scale and complexity

○ Business/Practical perspective

Terminology

Cell Individually managed cluster

Job Run of a multi-node application

Task Single-node component of a job

Alloc Guaranteed resource slot on a node (per-user, can span
jobs/tasks)

Alloc Set Cluster-wide group of allocs (like a job)

BorgMaster Central Manager, main point of contact for Borg

Borglet Per-node executor (daemon)

Unique Opportunities

The Customer Isn’t Always Right
When You Sign Their Paychecks

● No fair-sharing algorithms: Quotas enforce
company policy

● Social Engineering: Trainings and web-UI “hints”
tell engineers what are good and bad shapes for
jobs

● Big Hammer: When things go wrong (or just need
to change), you can always apply brute-force to the
problem

Livestock vs Pet

● Servers/tasks are Livestock, Not Pets
○ Server gets sick? -> Shoot it

○ More important task shows up? -> Shoot it

○ Configuration Changes? -> Shoot it

○ …

● Enabling Insights:
○ Everything must be fault-tolerant anyway!

○ Employees don’t complain (as much)!

Priority Jobs + Backfill

● Production vs Internal
○ “Prod Jobs” are customer facing and must

work at all times

○ Enormous left-over compute for “batch”

and low-priority jobs

● Latency-Sensitive vs Batch
○ Latency-sensitive tasks get better cgroup

policies

○ Batch jobs oversubscribe resources more

Key Design Choices

Resiliency is King (99.99%)

● Declarative and Idempotent Commands
○ Say how you want things to be

○ Keep saying it until it’s true

● Minimize Correlated Failures
○ Many placement restrictions

○ Coarse-grained priorities to avoid “priority avalanches” (tasks

keep preempting slightly lower priority tasks)

● Highly Consistent Replication
○ Everything important in multiple places

○ Heavy use of Paxos and Chubby for state

Enough Rope to Hang Yourself

● Manual Override:
○ Can hand-modify Borg checkpoint to work around

issues/bugs

○ Per-task requirements

○ 1000+ line config files

● Asterix City
○ Almost every statement in paper should have a

footnote (many do)

○ An exception for every rule

But a Very Good Knot Book

“If you aren’t measuring it, it’s out of control”
Dick Sites

● Introspection is Key
○ Yo dawg, I heard you like logs…

○ Most components export an HTTP server

○ Borgmaster aggregates task statistics constantly

● Simulators and Tests Galore!
○ Fauxmaster simulates new ideas and replicates bugs

○ Many small (<5k) clusters for trying out ideas

● Fast rollback through checkpoints

Conclusion

● Google Cheats (so take with a grain of salt)
○ Control their “customers”

○ Deep pockets

○ Unique workload

● But, they have some great insights
○ Fault-tolerance should be assumed

○ Good tooling and introspection solves many problems

○ Never assume you’ve covered all cases (backdoors can

be useful)

