
Cluster	Management	Systems
Ion	Stoica
CS	294

September	26,	2016



Motivation
l Rapid	innovation	in	cloud	computing

l Today
l No	single	framework	optimal	for	all	applications
l Each	framework	runs	on	its	dedicated	cluster	or	cluster	

partition	

Dryad

Pregel

CassandraHypertable

2011	slide



Computation	Model:	Frameworks
l A	framework (e.g.,	Hadoop,	MPI)	manages	one	or	
more	jobs in	a	computer	cluster

l A	job consists	of	one	or	more	tasks
l A	task (e.g.,	map,	reduce)	is	implemented	by	one	or	
more	processes	running	on	a	single	machine

3

cluster

Framework
Scheduler	(e.g.,	
Job	Tracker)

Executor
(e.g.,	Task	
Tracker)

Executor
(e.g.,	Task
Traker)

Executor
(e.g.,	Task
Tracker)

Executor	
(e.g.,	Task
Tracker)

task	1
task	5

task	3
task	7 task	4

task	2
task	6

Job	1: tasks	1,	2,	3,	4
Job	2:	tasks	5,	6,	7

2011	slide



One	Framework	Per	Cluster	Challenges
l Inefficient	resource	usage

l E.g.,	Hadoop	cannot	use	available	
resources	from	Pregel’s	cluster

l No	opportunity	for	stat.	multiplexing

l Hard	to	share	data
l Copy	or	access	remotely,	expensive

l Hard	to	cooperate
l E.g.,	Not	easy	for	Pregel	to	use	

graphs	generated	by	Hadoop

4

Hadoop

Pregel

0%#

25%#

50%#

0%#

25%#

50%#

Hadoop

Pregel

2011	slideNeed	to	run	multiple	frameworks	on	same	cluster



What	do	we	want?

l Common	resource	sharing	layer	
l Abstracts	(“virtualizes”)	resources	to	frameworks
l Enable	diverse	frameworks	to	share	cluster
l Make	it	easier	to	develop	and	deploy	new	frameworks	(e.g.,	Spark)

5

MPIHadoop
MPIHadoop

Resource	
Management	System

Uniprograming Multiprograming

2011	slide



Fine	Grained	Resource	Sharing

l Task	granularity	both	in	time	&	space
l Multiplex	node/time	between	tasks	belonging	to	different	

jobs/frameworks	

l Tasks	typically	short;	median	~=	10	sec,	minutes

l Why	fine	grained?
l Improve	data	locality
l Easier	to	handle	node	failures

6
2011	slide



Goals

l Efficient	utilization	of	resources

l Support	diverse	frameworks (existing	&	future)

l Scalability to	10,000’s	of	nodes

l Reliability in	face	of	node	failures

2011	slide



Approach:	Global	Scheduler

8

Global	
Scheduler

Organization	policies
Resource	availability

• Response	time
• Throughput
• Availability
• …

Job	requirements

2011	slide



Approach:	Global	Scheduler

9

Global	
Scheduler

Organization	policies
Resource	availability

• Task	DAG
• Inputs/outputs

Job	requirements
Job	execution	plan

2011	slide



Approach:	Global	Scheduler

10

Global	
Scheduler

Organization	policies
Resource	availability

• Task	durations
• Input	sizes
• Transfer	sizes

Job	requirements
Job	execution	plan

Estimates

2011	slide



Approach:	Global	Scheduler

l Advantages:	can	achieve	optimal	schedule
l Disadvantages:	

l Complexity	à hard	to	scale	and	ensure	resilience
l Hard	to	anticipate	future frameworks’ requirements		
l Need	to	refactor	existing	frameworks		

11

Global	
Scheduler

Organization	policies
Resource	availability

Task	scheduleJob	requirements
Job	execution	plan

Estimates

2011	slide



Motivations,	Now	and	Then
l Recall	main	motivations	in	2011:

l Efficient	resource	usage
l Enable	rapid	innovation
l Main	use	case:	big	data	frameworks

l What	has	changed	since	then?

12



What	has	Changed	Since	Then?
l Workloads:	run	long	running	applications	(e.g.,	fron-
end	services)	emerged	as	a	common	workload
l No	need	for	fine	grain	allocation

l Containers	have	evolved	from	an	isolation	
mechanism	to	a	packaging	solution	(e.g.,	Docker)
l Container	orchestration	a	major	use	case	àmanage	entire	

app	life	cycle:	develop,	test,	deploy

l Cloud	has	became	prevalent
l Easy	to	scale	up	using	PAYG	(statistic	multiplexing	less	

important) 13



How	to	classify	systems?

l What	is	the	granularity	of	resource	sharing?
l Tasks	vs	instance	allocation

l How	do	they	make	resource	management	decisions?
l Centralized	vs.	distributed	allocation
l Who	maps	resources	to	apps,	and	who	maps	resources	to	

tasks?
l What	resource	management	polices	they	enforce?

14



This	Lecture

l Mesos

l Yarn

l Omega	(and	Borg)

l Kubernetes

15


