
Incrementally Maintaining
Classification using an RDBMS

Presented by: Noah Golmant
October 3, 2016

HAZY

“An end-to-end system for imprecision management”

Goals:

● Integrate classification models into run-time operation with RDBMS
● Incorporate new training examples in a real-time, dynamic

environment

How?
● Model-based Views
● Incremental Maintenance

Goals:

● Integrate classification models into run-time operation with
RDBMS

● Incorporate new training examples in a real-time, dynamic
environment

How?
● Model-based Views
● Incremental Maintenance

Model-based Views

● Expose statistical computations through relational views
● Standard SQL semantics:

○ Queries for updates, inserts, and deletes
○ Triggers to propagate updates

Model-based Views

CREATE CLASSIFICATION VIEW

 Labeled_Papers KEY id -- (id, class)

 ENTITIES FROM Papers KEY id -- (id, title, ...)

 LABELS FROM Paper_Area LABEL l -- (label)

 EXAMPLES FROM Example_Papers KEY id LABEL l -- (id, label)

 FEATURE FUNCTION tf_bag_of_words

T(id, l)

Model-based Views

Incremental model maintenance should improve both of these approaches for:

1. Single Entity read
2. All Members read
3. Update

Eager Approach: maintain V as a
materialized view where updates to
class labels occur immediately after a
model update.

Lazy approach: in response to
read of an input id, read feature
vector and label using current
model.

Goals:

● Integrate classification models into run-time operation with RDBMS
● Incorporate new training examples in a real-time, dynamic

environment

How?
● Model-based Views
● Incremental Maintenance

Incremental Maintenance

At round i, we receive new examples to update a materialized view .

HAZY divides this into two problems:

1. How to perform an incremental step to update the old model to with
(preferably low) cost .

2. Decide when to reorganize to obtain a model by training on the whole
dataset with a fixed cost .

Incremental Maintenance
At round i, maintain a materialized view:

Where:

Let s be the last round at which HAZY reorganized the model.

Incremental Maintenance
Let be a round after the “anchor” s.

Only need to reclassify tuples satisfying:

Reorganization - The Skiing Strategy

Reorganization - The Skiing Strategy
You are going skiing for an unknown number of days d. Every day you choose
between renting a pair of skis for $1 and buying the pair for $10.

When should you purchase the skis?

Minimize the ratio between what you would pay using some decision strategy and
what you would pay if you knew d.

Reorganization - The Skiing Strategy
● Choose some .
● At each round i, accumulate a total cost:
● Reorganize when:
● Then reset the accumulated cost to 0.

This is a 2-approximation of the optimal strategy, and is optimal among all online,
deterministic strategies**.

Reorganization: update the model, re-cluster on t.eps, and rebuild indices.

**Assuming reorganizing more recently does not raise the cost.

Architectural Optimizations
● In-memory architecture:

○ Maintain classification view in memory, discard when memory needs to
be revoked.

○ Cluster the data (on t.eps) in memory.
○ We only need to persist the entities and training examples since

everything else can be re-computed.
● Hybrid architecture:

○ Maintain buffer for entities.
○ Cache t.eps if we can’t store all the entities in memory.

Questions, Issues

● How does this fit with the semantics of streaming systems?
● Not “black box” enough:

○ Featurization still exposed (vs. LASER source nodes).
○ Lazy and eager approaches have different semantics.

● Scalability - balancing throughput with feature length, dataset size.
● Drift, dataset size and the monotonicity assumption.

Questions, Issues

● Pushing incremental maintenance through the model training process:
○ SGD is orders of magnitude slower on larger datasets when

performed in HAZY system vs. a hand-coded C file. Can this be
improved without bulk-loading?

○ Can we take advantage of epsilon clustering during training?

