
1

Michael Whittaker



2



3



4

Hadoop



5

Hadoop



6

Hadoop



7

Hadoop



8

Hadoop



9

Hadoop



10

Hadoop



11

Hadoop Storm



12

Hadoop Storm



13

Hadoop Storm



14

Hadoop Storm



15

Hadoop Storm



16

Hadoop Storm



17

Hadoop Storm



18

Hadoop Storm



19

Hadoop Storm Spark

Monolithic Cluster Manager



20

Hadoop Storm Spark ???

Monolithic Cluster Manager



21

Hadoop Storm Spark ???

Mesos



Mesos slave Mesos slave Mesos slave 
MPI 

executor 

task 

Hadoop 
executor 

task 

MPI 
executor 

task task 

Hadoop 
executor 

task task 

Mesos 
master 

Hadoop 
scheduler 

MPI 
scheduler 

Standby 
master 

Standby 
master 

ZooKeeper 
quorum 

Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy

Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [20]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview

Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource offer
is a list of free resources on multiple slaves. The master
decides how many resources to offer to each framework
according to an organizational policy, such as fair sharing

FW Scheduler 
Job 1 Job 2 
Framework 1 

Allocation 
module 

Mesos 
master 

<s1, 4cpu, 4gb, … > 1 <fw1, task1, 2cpu, 1gb, … > 
<fw1, task2, 1cpu, 2gb, … > 4 

Slave 1 

Task 
Executor 

Task 

FW Scheduler 
Job 1 Job 2 
Framework 2 

Task 
Executor 

Task 

Slave 2 

<s1, 4cpu, 4gb, … > 
<task1, s1, 2cpu, 1gb, … > 
<task2, s1, 1cpu, 2gb, … > 3 2 

Figure 3: Resource offer example.

or priority. To support a diverse set of inter-framework
allocation policies, Mesos lets organizations define their
own policies via a pluggable allocation module.

Each framework running on Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources to of-
fer to each framework, the frameworks’ schedulers select
which of the offered resources to use. When a framework
accepts offered resources, it passes Mesos a description
of the tasks it wants to launch on them.

Figure 3 shows an example of how a framework gets
scheduled to run tasks. In step (1), slave 1 reports
to the master that it has 4 CPUs and 4 GB of mem-
ory free. The master then invokes the allocation mod-
ule, which tells it that framework 1 should be offered
all available resources. In step (2), the master sends a
resource offer describing these resources to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using 〈2 CPUs, 1 GB RAM〉 for the first task, and
〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted borders). Because 1 CPU and 1 GB of RAM are
still free, the allocation module may now offer them to
framework 2. In addition, this resource offer process re-
peats when tasks finish and new resources become free.

To maintain a thin interface and enable frameworks
to evolve independently, Mesos does not require frame-
works to specify their resource requirements or con-
straints. Instead, Mesos gives frameworks the ability to
reject offers. A framework can reject resources that do
not satisfy its constraints in order to wait for ones that
do. Thus, the rejection mechanism enables frameworks
to support arbitrarily complex resource constraints while
keeping Mesos simple and scalable.

One potential challenge with solely using the rejec-

3

Source: Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center



Mesos slave Mesos slave Mesos slave 
MPI 

executor 

task 

Hadoop 
executor 

task 

MPI 
executor 

task task 

Hadoop 
executor 

task task 

Mesos 
master 

Hadoop 
scheduler 

MPI 
scheduler 

Standby 
master 

Standby 
master 

ZooKeeper 
quorum 

Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPI).

3 Architecture
We begin our description of Mesos by discussing our de-
sign philosophy. We then describe the components of
Mesos, our resource allocation mechanisms, and how
Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy

Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters.
Because cluster frameworks are both highly diverse and
rapidly evolving, our overriding design philosophy has
been to define a minimal interface that enables efficient
resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frame-
works. Pushing control to the frameworks has two bene-
fits. First, it allows frameworks to implement diverse ap-
proaches to various problems in the cluster (e.g., achiev-
ing data locality, dealing with faults), and to evolve these
solutions independently. Second, it keeps Mesos simple
and minimizes the rate of change required of the system,
which makes it easier to keep Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-
pect higher-level libraries implementing common func-
tionality (such as fault tolerance) to be built on top of
it. These libraries would be analogous to library OSes in
the exokernel [20]. Putting this functionality in libraries
rather than in Mesos allows Mesos to remain small and
flexible, and lets the libraries evolve independently.

3.2 Overview

Figure 2 shows the main components of Mesos. Mesos
consists of a master process that manages slave daemons
running on each cluster node, and frameworks that run
tasks on these slaves.

The master implements fine-grained sharing across
frameworks using resource offers. Each resource offer
is a list of free resources on multiple slaves. The master
decides how many resources to offer to each framework
according to an organizational policy, such as fair sharing

FW Scheduler 
Job 1 Job 2 
Framework 1 

Allocation 
module 

Mesos 
master 

<s1, 4cpu, 4gb, … > 1 <fw1, task1, 2cpu, 1gb, … > 
<fw1, task2, 1cpu, 2gb, … > 4 

Slave 1 

Task 
Executor 

Task 

FW Scheduler 
Job 1 Job 2 
Framework 2 

Task 
Executor 

Task 

Slave 2 

<s1, 4cpu, 4gb, … > 
<task1, s1, 2cpu, 1gb, … > 
<task2, s1, 1cpu, 2gb, … > 3 2 

Figure 3: Resource offer example.

or priority. To support a diverse set of inter-framework
allocation policies, Mesos lets organizations define their
own policies via a pluggable allocation module.

Each framework running on Mesos consists of two
components: a scheduler that registers with the master
to be offered resources, and an executor process that is
launched on slave nodes to run the framework’s tasks.
While the master determines how many resources to of-
fer to each framework, the frameworks’ schedulers select
which of the offered resources to use. When a framework
accepts offered resources, it passes Mesos a description
of the tasks it wants to launch on them.

Figure 3 shows an example of how a framework gets
scheduled to run tasks. In step (1), slave 1 reports
to the master that it has 4 CPUs and 4 GB of mem-
ory free. The master then invokes the allocation mod-
ule, which tells it that framework 1 should be offered
all available resources. In step (2), the master sends a
resource offer describing these resources to framework
1. In step (3), the framework’s scheduler replies to the
master with information about two tasks to run on the
slave, using 〈2 CPUs, 1 GB RAM〉 for the first task, and
〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in
step (4), the master sends the tasks to the slave, which al-
locates appropriate resources to the framework’s execu-
tor, which in turn launches the two tasks (depicted with
dotted borders). Because 1 CPU and 1 GB of RAM are
still free, the allocation module may now offer them to
framework 2. In addition, this resource offer process re-
peats when tasks finish and new resources become free.

To maintain a thin interface and enable frameworks
to evolve independently, Mesos does not require frame-
works to specify their resource requirements or con-
straints. Instead, Mesos gives frameworks the ability to
reject offers. A framework can reject resources that do
not satisfy its constraints in order to wait for ones that
do. Thus, the rejection mechanism enables frameworks
to support arbitrarily complex resource constraints while
keeping Mesos simple and scalable.

One potential challenge with solely using the rejec-

3

Source: Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



24

Resource Allocation

I Q: How are resources offered to frameworks?

I A: Pluggable allocation module determines how resources are
offered to frameworks.

I Q: When are resources offered to frameworks?

I A: Mesos assumes tasks are short and offers resources when
tasks end.

I Q: What if tasks aren’t short?

I A: Mesos can kill tasks, giving the framework a grace period
for cleaning up.

I Q: What if jobs don’t want to die?

I A: Mesos provides each framework with a guarenteed
allocation. So long as framework uses less than it’s
guarenteed allocation, it’s jobs won’t be killed.



25

Demo



26

Mesos Behavior

Mesos performs best with
elastic frameworks and

homogenous task durations.



27

Rigid Framework

I Ramp-up time: T

I Completion time: (1 + β)T

I Utilization: β
1
2
+β

n = k

T T T

βT

(1 + β)T

kβTkT
2



27

Rigid Framework

I Ramp-up time: T

I Completion time: (1 + β)T

I Utilization: β
1
2
+β

n = k

T T T

βT

(1 + β)T

kβTkT
2



28

Elastic Framework

I Ramp-up time: T

I Completion time: (12 + β)T

I Utilization: 1

n = k

T T T
2

βT

(12 + β)T



29

Implementation

I 10,000 lines of C++

I Supported Hadoop, Torque, and Spark

I Lots of impressive performance benchmarks



30

Lessons

I Clusters need schedulers to improve utilization

I Schedulers should form a narrow waist between frameworks
and the cluster

I Be simple

I Adhere to the end-to-end argument



31

Questions



32

Extras



33

Isolation

https://goo.gl/dqQ6lG



34

Scalability and Robustness

I Frameworks can install filters with the Mesos master.

I Offered resources count against a framework’s allocation.

I If a frameworks is slow to respond, Mesos can rescind offers.



35

Fault Tolerance

I Mesos uses soft state derivable from slaves and frameworks.

I Hot standby replicas.

I Each framework can install multiple schedulers.



36

Placement Preferences

Placement preferences can be achieved with delay and lottery
scheduling.



37

Heterogenous Tasks

If the number of slots on each machine is big, the chances that a
machine will be filled completely with long lived tasks is small.


