Deep Learning Overview

Joseph E. Gonzalez

jegonzal@cs.berkeley.edu

Borrowed heavily from excellent talks by:

- Adam Coates: <u>http://ai.stanford.edu/~acoates/coates_dltutorial_2013.pptx</u>
- Fei-Fei Li and Andrej Karpathy: <u>http://cs231n.stanford.edu/syllabus.html</u>

Machine Learning -> Function Approximation

Object Recognition

Speech Recognition

"The cat in the hat"

Machine Translation

Object Recognition

Speech Recognition

"The cat in the hat"

Object Recognition

Speech Recognition

Often build multiple layers of features to abstract the input

Deep learning tries to automated this process.

Deep Learning: automatically *learn a deep hierarchy of abstract features* along with the classifier.

- > Typically using neural networks
 - composable general function approximators

Why is Deep Learning so Successful?

- Feature engineering essential to many applications
 - ➤ Expensive hand-engineering of "layers" of representation.
 - > Deep learning **automates** the process of **feature engineering**
- Previous attempts were limited by data and computation
 - > We now have access to substantial amounts of data and computation
- Deep learning techniques are inherently compositional
 - \succ Easy to extend and combine \rightarrow rapid development

Crash Course in Neural Networks

Supervised Learning

Predict is this a picture of a cat?

Supervised Learning

Predict is this a picture of a cat?

- > and training data: $\mathcal{D}_{\text{train}} = \{(x_i, y_i)\}_{i=1}^n$
- Learn a function:

$$f_w(x) = y$$

 \succ By estimating the parameters W

Logistic Regression for Binary Classification

Consider the simple function family:

$$f_w(x) = \sigma\left(w^T x\right) = \sigma\left(\sum_{j=1}^d w_j x_j\right) = P(y = 1 \mid x)$$

Logistic Regression as a "Neuron"

 \succ Consider the simple function family:

$$f_w(x) = \sigma\left(w^T x\right) = \sigma\left(\sum_{j=1}^d w_j x_j\right) = P(y=1)$$

Neuron "fires" if weighted sum of input is greater than zero.

 $\frac{1}{1+\exp(-u)}$

x)

 $\sigma(u) =$

Υ.

Learning the logistic regression model

- > Consider the simple function family: $\sigma(u) = \frac{1}{1 + \exp(-u)}$ $f_w(x) = \sigma\left(w^T x\right) = \sigma\left(\sum_{j=1}^d w_j x_j\right) = P(y = 1 \mid x)$
- ➤ Goal: find w that minimizes the loss on the training data:

$$\mathcal{L}(w) = \sum_{i=1}^{n} L\left(f_w(x_i), y_i\right) = \sum_{i=1}^{n} f_w(x_i)^{y_i} \left(1 - f_w(x_i)\right)^{1-y_i}$$

likelihood

Numerical Optimization

➤ Gradient Descent:

$$w^{(t+1)} = w^{(t)} - \eta_t \nabla_w \mathcal{L}(w)$$

> Convex \rightarrow Guaranteed to find optimal w

Stochastic gradient descent:

$$\nabla_w \mathcal{L}(w) = \sum_{i=1}^n \nabla_w L\left(f_w(x_i), y_i\right)$$

Approximate $\approx n \nabla_w L(f_w(x_i), y_i)$ for $(x_i, y_i) \sim \mathcal{D}$

SIOW

 $\nabla w \mathcal{L}(w)$

Logistic Regression: Strengths and Limitations

- ➢ Widely used machine learning technique
 - \succ convex \rightarrow efficient to learn
 - easy to interpret model weights
 - works well given good features
- > Limitations:
 - \succ Restricted to linear relationships \rightarrow sensitive to choice of features

Feature Engineering

Rather than use raw pixels build/train feature functions:

Composition Linear Models and Nonlinearities

Composition Linear Models and Nonlinearities

Neural Networks

Composing "perceptrons"

$$x \to \sigma(W^0 x) \to h^1 \to \sigma(W^1 h^1) \to h^2 \to \sigma(W^2 h^2) \to f$$
$$y = f_{W^0, W^1, W^2}(x) = \sigma\left(W^2 \sigma\left(W^1 \sigma\left(W^0 x\right)\right)\right)$$

Neural Networks

Composing non-linear models (e.g., Logistic Regression):

Backpropagation in Neural Networks

$$y = f_{W^0, W^1, W^2}(x) = \sigma \left(W^2 \ \sigma \left(W^1 \ \sigma \left(W^0 x \right) \right) \right)$$

> Need to compute the gradient of the loss wrt. W^0 , W^1 , and W^2 $\nabla_{W^0,W^1,W^2}L(y,f_{W^0,W^1,W^2}(x))$

Use chain rule to push gradients back through dataflow graph:

$$x \to \overbrace{\sigma(W^0 x)} \to h^1 \to \overbrace{\sigma(W^1 h^1)} \to h^2 \to \overbrace{\sigma(W^2 h^2)} \to f$$

Backpropagation in Neural Networks

$$x \to \overbrace{\sigma(W^0 x)} \to h^1 \to \overbrace{\sigma(W^1 h^1)} \to h^2 \to \overbrace{\sigma(W^2 h^2)} \to f$$

$$W^0 \xrightarrow{} W^1 \xrightarrow{} W^1 \xrightarrow{} W^2 \xrightarrow{} W^2 \xrightarrow{} f$$

> Define a general operator:

Backpropagation in Neural Networks

$$x \to \overbrace{\sigma(W^0 x)} \to h^1 \to \overbrace{\sigma(W^1 h^1)} \to h^2 \to \overbrace{\sigma(W^2 h^2)} \to f$$

$$W^0 \xrightarrow{} W^1 \xrightarrow{} W^1 \xrightarrow{} W^2 \xrightarrow{} W^2 \xrightarrow{} f$$

> Define a general operator:

Simple Example: f(x, y, z) = (x + y) * y * z

Backpropagation

Requires all operators to have well defined sub-gradients:

Enables Automatic Differentiation!

- \succ User defines forward flow \rightarrow system derives efficient training alg.
- Easy to explore composition of new modules

Enables Efficient Gradient Computation

- Cache forward calculation to accelerate gradients
- Compile optimized gradient computation

General Purpose Systems For DNNs

- Distributed Parameter Servers
 - TensorFlow (DistBelief)
 - Microsoft Adam
- ➢ GPU Systems
 - ➤ TensorFlow
 - ➤ Caffe
 - > Theano

Demo of TensorFlow

Challenges of Deep Neural Networks

- ➢ Non-convex → (stochastic) gradient descent not guaranteed to converge to optimum
 - Soln: appear to be many good local optima
- \succ High-dimensional \rightarrow gradient descent converges slowly
 - Soln: hardware acceleration, improved algs. with momentum ...
- \succ Rich function class \rightarrow overfitting
 - Soln: more data, early-stopping, drop-out, parameter sharing
- \succ Saturation of sigmoid \rightarrow decaying gradients
 - Soln: other forms of non-linearity

Convolutional Neural Networks: Exploiting Spatial Sparsity

Example: AlexNet (Krizhevsky et al., NIPS 2012)

 Introduced in 2012, significantly outperformed state-of-the-art (top 5 error of 16% compared to runner-up with 26% error)
 Covered in reading ...

Growth in Model Complexity

LeCun et al, *"Backpropagation Applied to Handwritten Zip Code Recognition"*. 1989

Szegedy et al, "Going Deeper with Convolution". 2014

Winner of ImageNet Large-Scale
 Visual Recognition Challenge 2014

GoogLeNet (7.89% error)

- > 22 layers
- 6.8M parameters
- > 1.5*B* flops
- Ensemble of 7 models
- Current Best: ResNet (3.57% error)
 - > 152 layers
 - 2.3M parameters
 - > 11.3*B* flops
 - Ensemble of 6 models

Cost of Computation (from Prediction Serving Lecture)

Network: GoogLeNet	Batch Size	Titan X (FP32)	Tegra X1 (FP32)	Tegra X1 (FP16)
Inference Performance	1	138 img/sec	33 img/sec	33 img/sec
Power		119.0 W	5.0 W	4.0 W
Performance/Watt		1.2 img/sec/W	6.5 img/sec/W	8.3 img/sec/W
Inference Performance	128 (Titan X) 64 (Tegra X1)	863 img/sec	52 img/sec	75 img/sec
Power		225.0 W	5.9 W	5.8 W
Performance/Watt		3.8 img/sec/W	8.8 img/sec/W	12.8 img/sec/W

Table 3 GoogLeNet inference results on Tegra X1 and Titan X. Tegra X1's total memory capacity is not sufficient to run batch size 128 inference.

- > 100's of millions of parameters + convolutions & unrolling
- Requires hardware acceleration

http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf

Improvement on ImagNet Benchmark

ILSVRC top-5 error on ImageNet

Recurrent Neural Networks: Modeling Sequence Structure

- State of the art in speech recognition and machine translation
 Required LSTM and GRU to address long dependencies
- ➢ Similar to the HMM from classical Bayesian ML

Improvements in Machine Translation & Automatic Speech Recognition

Progress in Machine Translation

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

