
Joseph E. Gonzalez
jegonzal@cs.berkeley.edu

Deep Learning
Overview

Borrowed heavily from excellent talks by:
• Adam Coates: http://ai.stanford.edu/~acoates/coates_dltutorial_2013.pptx
• Fei-Fei Li and Andrej Karpathy: http://cs231n.stanford.edu/syllabus.html

Machine Learning è Function Approximation

Label:Cat

Object Recognition Speech Recognition

“The cat in
the hat”

Robotic Control

The cat in the hat.

El gato en el sombrero

Machine Translation

Label:Cat

Object Recognition

Speech Recognition

“The cat in
the hat”

Function Approximation Pipeline

Label:Cat

Object Recognition

Speech Recognition

“The cat in
the hat”

SVM

HMM

Function Approximation Pipeline

Often build multiple layers of features to abstract the input

Label:Cat

SVM

Label:Cat

SVM

Deep learning tries to automated this process.

Function Approximation Pipeline

Deep Learning: automatically learn a deep hierarchy of
abstract features along with the classifier.

Ø Typically using neural networks
Ø composable general function approximators

Label:Cat

SVM
Low-level
Features

Mid-level
Features

High-level
Features

Learn more abstract representation

Function Approximation Pipeline

Why is Deep Learning so Successful?
Ø Feature engineering essential to many applications

Ø Expensive hand-engineering of “layers” of representation.
Ø Deep learning automates the process of feature engineering

Ø Previous attempts were limited by data and computation
Ø We now have access to substantial amounts of data and computation

Ø Deep learning techniques are inherently compositional
Ø Easy to extend and combine à rapid development

Crash Course in
Neural Networks

Supervised Learning
Ø Predict is this a picture of a cat?

x =

Supervised Learning
Ø Predict is this a picture of a cat?

Ø and training data:

Ø Learn a function:

Ø By estimating the parameters w

=

Dtrain = {(xi, yi)}ni=1

2 Rd

fw(x) = y

y 2 {0, 1}x =

Logistic Regression for Binary Classification
Ø Consider the simple function family:

Ø With non-linearity:

�(u) =
1

1 + exp(�u)

fw(x) = �

�
w

T
x

�
= �

0

@
dX

j=1

wjxj

1

A = P (y = 1 |x)

Logistic Regression as a “Neuron”
Ø Consider the simple function family: �(u) =

1

1 + exp(�u)

fw(x) = �

�
w

T
x

�
= �

0

@
dX

j=1

wjxj

1

A = P (y = 1 |x)

w52x52

Neuron “fires”
if weighted
sum of input is
greater than
zero.

“perceptron”

Bias= w0 x

Learning the logistic regression model
Ø Consider the simple function family:

Ø Goal: find w that minimizes the loss on the training data:

�(u) =
1

1 + exp(�u)

fw(x) = �

�
w

T
x

�
= �

0

@
dX

j=1

wjxj

1

A = P (y = 1 |x)

L(w) =
nX

i=1

L (fw(xi), yi) =
nX

i=1

fw(xi)
yi (1� fw(xi))

1�yi

likelihood

Numerical Optimization
Ø Gradient Descent:

Ø Convex à Guaranteed to find optimal w
Ø Stochastic gradient descent:

w(t+1) = w(t) � ⌘trwL(w)
�rw

L(w
)

L(
w
)

w

rwL(w) =
nX

i=1

rwL (fw(xi), yi)

⇡ nrwL (fw(xi), yi) for (xi, yi) ⇠ D

Slow

Approximate

Logistic Regression: Strengths and Limitations
Ø Widely used machine learning technique

Ø convex à efficient to learn
Ø easy to interpret model weights
Ø works well given good features

Ø Limitations:
Ø Restricted to linear relationships à sensitive to choice of features

y = 0

y = 1

1

2

Pi
xe

l 2

Pixel 1

Pi
xe

l 2

Pixel 1

1

1

0

0

Feature Engineering

Ø Rather than use raw pixels build/train feature functions:

1

2

Pi
xe

l 2

Pixel 1

Pi
xe

l 2

Pixel 1

1

1

0

0

g = (Paws, Furry)
Fu

rry
Paws

1
1

0 0
fw(g(x))

fw(x)

Composition Linear Models and
Nonlinearities

x1

x2

xd

Input Layer
(Pixels)

d
1

zk

1

W0k

d

= zk

1

k

1

𝜎 =
h1

h2

hk

Composition Linear Models and
Nonlinearities

k
1

h1

h2

hk

W12

k

z2

1

= 𝜎 z2

1

2

1

h1

h2=

Neural Networks
Ø Composing “perceptrons”

y = fW 0,W 1,W 2(x) = �

�
W

2
�

�
W

1
�

�
W

0
x

���

x1

x2

xd

h1
1

h1
2

h1
k1 h2

k2

h2
2

h2
1

f

W0 W1

W2

Hidden Layers

In
pu

t L
ay

er

x ! �(W 0
x) ! h

1 ! �(W 1
h

1) ! h

2 ! �(W 2
h

2) ! f

Output

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

Input

Output

Logistic Regression

Deep Learning àMany hidden layers …

Neural Networks
Ø Composing non-linear models (e.g., Logistic Regression):

Ø Learn W0, W1, and W2 using Backpropagation + SGD

y = fW 0,W 1,W 2(x) = �

�
W

2
�

�
W

1
�

�
W

0
x

���

x1

x2

xd

h1
1

h1
2

h1
k1 h2

k2

h2
2

h2
1

f

W0 W1

W2

Hidden Layers

In
pu

t L
ay

er

x ! �(W 0
x) ! h

1 ! �(W 1
h

1) ! h

2 ! �(W 2
h

2) ! f

Backpropagation in Neural Networks

Ø Need to compute the gradient of the loss wrt. W0, W1, and W2

Ø Use chain rule to push gradients back through dataflow graph:

y = fW 0,W 1,W 2(x) = �

�
W

2
�

�
W

1
�

�
W

0
x

���

rW 0,W 1,W 2
L(y, fW 0,W 1,W 2(x))

x ! �(W 0
x) ! h

1 ! �(W 1
h

1) ! h

2 ! �(W 2
h

2) ! f

W 0 W 1 W 2

Backpropagation in Neural Networks

Ø Define a general operator:

x ! �(W 0
x) ! h

1 ! �(W 1
h

1) ! h

2 ! �(W 2
h

2) ! f

W 0 W 1 W 2

g(w, h) gh

Wkl

@L(W)

@g

@L(W)

@Wkl
=

X

j

@L(W)

@gj

@gj
@W i

kl

@L(W)

@hk
=

X

j

@L(W)

@gj

@gj
@hk

Backpropagation in Neural Networks

Ø Define a general operator:

x ! �(W 0
x) ! h

1 ! �(W 1
h

1) ! h

2 ! �(W 2
h

2) ! f

W 0 W 1 W 2

g(w, h) gh

@L(W)

@g

@L(W)

@Wkl
=

X

j

@L(W)

@gj

@gj
@W i

kl

@L(W)

@hk
=

X

j

@L(W)

@gj

@gj
@hk

Wkl

Simple Example:

x

y

z

+

⨯

2

3

4

5

60
1

15

⨯4

12 = 4*3

20 = 4*5

f(x, y, z) = (x+ y) ⇤ y ⇤ z

15

12
12

32=12+20

12

15
h2 * z

h1 * y

Backpropagation
Ø Requires all operators to have well defined sub-gradients:

Ø Enables Automatic Differentiation!
Ø User defines forward flow à system derives efficient training alg.
Ø Easy to explore composition of new modules

Ø Enables Efficient Gradient Computation
Ø Cache forward calculation to accelerate gradients
Ø Compile optimized gradient computation

tanh logit Relu = max(0,x) abs

General Purpose
Systems For DNNs
Ø Distributed Parameter Servers

Ø TensorFlow (DistBelief)
Ø Microsoft Adam

Ø GPU Systems
Ø TensorFlow
Ø Caffe
Ø Theano

Demo of TensorFlow

Challenges of Deep Neural Networks
Ø Non-convex à (stochastic) gradient descent not guaranteed to

converge to optimum
Ø Soln: appear to be many good local optima

Ø High-dimensional à gradient descent converges slowly
Ø Soln: hardware acceleration, improved algs. with momentum …

Ø Rich function class à overfitting
Ø Soln: more data, early-stopping, drop-out, parameter sharing

Ø Saturation of sigmoid à decaying gradients
Ø Soln: other forms of non-linearity

logit Relu = max(0,x)

Convolutional Neural Networks:
Exploiting Spatial Sparsity

Example: AlexNet (Krizhevsky et al., NIPS 2012)

Ø Introduced in 2012, significantly outperformed state-of-the-art
(top 5 error of 16% compared to runner-up with 26% error)
Ø Covered in reading …

Growth in Model Complexity
LeCun et al, “Backpropagation Applied to
Handwritten Zip Code Recognition”. 1989

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

9K Parameters
66K Ops

Szegedy et al, “Going Deeper with
Convolution”. 2014

Ø Winner of ImageNet Large-Scale
Visual Recognition Challenge 2014

ØGoogLeNet (7.89% error)
Ø 22 layers
Ø 6.8M parameters
Ø 1.5B flops
Ø Ensemble of 7 models

Ø Current Best: ResNet (3.57% error)
Ø 152 layers
Ø 2.3M parameters
Ø 11.3B flops
Ø Ensemble of 6 models

Cost of Computation
(from Prediction Serving Lecture)

Ø 100’s of millions of parameters + convolutions & unrolling
Ø Requires hardware acceleration

9

Table 2 shows the results for the Titan X GPU and the Xeon E5-2698 v3 server-class processor.

Network: AlexNet Batch Size Titan X (FP32) Xeon E5-2698 v3 (FP32)

Inference Performance

1

405 img/sec 76 img/sec
Power 164.0 W 111.7 W

Performance/Watt 2.5 img/sec/W 0.7 img/sec/W

Inference Performance
128 (Titan X)
48 (Xeon E5)

3216 img/sec 476 img/sec

Power 227.0 W 149.0 W

Performance/Watt 14.2 img/sec/W 3.2 img/sec/W

Table 2 Inference performance, power, and energy efficiency on Titan X and Xeon E5-2698 v3.

The comparison between Titan X and Xeon E5 reinforces the same conclusion as the comparison
between Tegra X1 and Core i7: GPUs appear to be capable of significantly higher energy efficiency for
deep learning inference on AlexNet. In the case of Titan X, the GPU not only provides much better
energy efficiency than the CPU, but it also achieves substantially higher performance at over 3000
images/second in the large-batch case compared to less than 500 images/second on the CPU. While
larger batch sizes are more efficient to process, the comparison between Titan X and Xeon E5 with no
batching proves that the GPU’s efficiency advantage is present even for smaller batch sizes. In
comparison with Tegra X1, the Titan X manages to achieve competitive Performance/Watt despite its
much bigger GPU, as the large 12 GB framebuffer allows it to run more efficient but memory-capacity-
intensive FFT-based convolutions.

Finally, Table 3 presents inference results on GoogLeNet. As mentioned before, IDLF provides no support
for GoogLeNet, and alternative deep learning frameworks have never been optimized for CPU
performance. Therefore, we omit CPU results here and focus entirely on the GPUs. As GoogLeNet is a
much more demanding network than AlexNet, Tegra X1 cannot run batch size 128 inference due to
insufficient total memory capacity (4GB on a Jetson™ TX1 board). The massive framebuffer on the Titan
X is sufficient to allow inference with batch size 128.

Network: GoogLeNet Batch Size Titan X (FP32) Tegra X1 (FP32) Tegra X1 (FP16)

Inference Performance

1

138 img/sec 33 img/sec 33 img/sec
Power 119.0 W 5.0 W 4.0 W

Performance/Watt 1.2 img/sec/W 6.5 img/sec/W 8.3 img/sec/W

Inference Performance
128 (Titan X)
64 (Tegra X1)

 863 img/sec 52 img/sec 75 img/sec

Power 225.0 W 5.9 W 5.8 W

Performance/Watt 3.8 img/sec/W 8.8 img/sec/W 12.8 img/sec/W

Table 3 GoogLeNet inference results on Tegra X1 and Titan X. Tegra X1's total memory capacity is not sufficient to run batch size
128 inference.

Compared to AlexNet, the results show significantly lower absolute performance values, indicating how
much more computationally demanding GoogLeNet is. However, even on GoogLeNet, all GPUs are
capable of achieving real-time performance on a 30 fps camera feed.

http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf

Improvement on ImagNet Benchmark

Recurrent Neural Networks:
Modeling Sequence Structure

Ø State of the art in speech recognition and machine translation
Ø Required LSTM and GRU to address long dependencies

Ø Similar to the HMM from classical Bayesian ML

The cat in the hat.

El gato en el sombrero

Improvements in Machine Translation &
Automatic Speech Recognition

