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Deep Learning
Overview

Borrowed heavily from excellent talks by:
• Adam Coates: http://ai.stanford.edu/~acoates/coates_dltutorial_2013.pptx
• Fei-Fei Li and Andrej Karpathy: http://cs231n.stanford.edu/syllabus.html



Machine Learning è Function Approximation
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Often build multiple layers of features to abstract the input
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Deep learning tries to automated this process.

Function Approximation Pipeline



Deep Learning: automatically learn a deep hierarchy of 
abstract features along with the classifier.

Ø Typically using neural networks
Ø composable general function approximators
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Why is Deep Learning so Successful?
Ø Feature engineering essential to many applications

Ø Expensive hand-engineering of “layers” of representation.
Ø Deep learning automates the process of feature engineering

Ø Previous attempts were limited by data and computation
Ø We now have access to substantial amounts of data and computation

Ø Deep learning techniques are inherently compositional
Ø Easy to extend and combine à rapid development



Crash Course in 
Neural Networks



Supervised Learning
Ø Predict is this a picture of a cat?

x =



Supervised Learning
Ø Predict is this a picture of a cat?

Ø and training data:

Ø Learn a function:

Ø By estimating the parameters w
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Logistic Regression for Binary Classification
Ø Consider the simple function family:

Ø With non-linearity:
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Logistic Regression as a “Neuron”
Ø Consider the simple function family: �(u) =
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Learning the logistic regression model
Ø Consider the simple function family:

Ø Goal: find w that minimizes the loss on the training data:
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Numerical Optimization
Ø Gradient Descent:

Ø Convex à Guaranteed to find optimal w
Ø Stochastic gradient descent:
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Logistic Regression: Strengths and Limitations
Ø Widely used machine learning technique

Ø convex à efficient to learn
Ø easy to interpret model weights
Ø works well given good features

Ø Limitations:
Ø Restricted to linear relationships à sensitive to choice of features

y = 0

y = 1

1

2

Pi
xe

l 2

Pixel 1

Pi
xe

l 2

Pixel 1

1

1

0

0



Feature Engineering

Ø Rather than use raw pixels build/train feature functions:
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Composition Linear Models and 
Nonlinearities
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Composition Linear Models and 
Nonlinearities
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Neural Networks
Ø Composing “perceptrons”
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Output

input
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Figure 3: GoogLeNet network with all the bells and whistles
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Neural Networks
Ø Composing non-linear models (e.g., Logistic Regression):

Ø Learn W0, W1, and W2 using Backpropagation + SGD
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Backpropagation in Neural Networks

Ø Need to compute the gradient of the loss wrt. W0, W1, and W2

Ø Use chain rule to push gradients back through dataflow graph:
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Backpropagation in Neural Networks

Ø Define a general operator:
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Backpropagation in Neural Networks

Ø Define a general operator:
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Simple Example:
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Backpropagation
Ø Requires all operators to have well defined sub-gradients:

Ø Enables Automatic Differentiation!
Ø User defines forward flow à system derives efficient training alg.
Ø Easy to explore composition of new modules

Ø Enables Efficient Gradient Computation
Ø Cache forward calculation to accelerate gradients
Ø Compile optimized gradient computation

tanh logit Relu = max(0,x) abs



General Purpose 
Systems For DNNs
Ø Distributed Parameter Servers 

Ø TensorFlow (DistBelief)
Ø Microsoft Adam

Ø GPU Systems
Ø TensorFlow
Ø Caffe
Ø Theano

Demo of TensorFlow



Challenges of Deep Neural Networks 
Ø Non-convex à (stochastic) gradient descent not guaranteed to 

converge to optimum
Ø Soln: appear to be many good local optima

Ø High-dimensional à gradient descent converges slowly
Ø Soln: hardware acceleration, improved algs. with momentum …

Ø Rich function class à overfitting
Ø Soln: more data, early-stopping, drop-out, parameter sharing

Ø Saturation of sigmoid à decaying gradients
Ø Soln: other forms of non-linearity

logit Relu = max(0,x)



Convolutional Neural Networks: 
Exploiting Spatial Sparsity



Example: AlexNet (Krizhevsky et al., NIPS 2012)

Ø Introduced in 2012, significantly outperformed state-of-the-art 
(top 5 error of 16% compared to runner-up with 26% error)
Ø Covered in reading …



Growth in Model Complexity
LeCun et al, “Backpropagation Applied to 
Handwritten Zip Code Recognition”. 1989
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Figure 3: GoogLeNet network with all the bells and whistles
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9K Parameters
66K Ops

Szegedy et al, “Going Deeper with 
Convolution”. 2014

Ø Winner of ImageNet Large-Scale 
Visual Recognition Challenge 2014

ØGoogLeNet (7.89% error)
Ø 22 layers
Ø 6.8M parameters
Ø 1.5B flops
Ø Ensemble of 7 models

Ø Current Best: ResNet (3.57% error)
Ø 152 layers
Ø 2.3M parameters
Ø 11.3B flops
Ø Ensemble of 6 models



Cost of Computation 
(from Prediction Serving Lecture)

Ø 100’s of millions of parameters + convolutions & unrolling
Ø Requires hardware acceleration

9 
 

Table 2 shows the results for the Titan X GPU and the Xeon E5-2698 v3 server-class processor. 

Network: AlexNet Batch Size Titan X (FP32) Xeon E5-2698 v3 (FP32) 

Inference Performance 

1 

405 img/sec 76 img/sec 
Power 164.0 W 111.7 W 

Performance/Watt 2.5 img/sec/W 0.7 img/sec/W 

Inference Performance 
128 (Titan X) 
48 (Xeon E5) 

3216 img/sec 476 img/sec 

Power 227.0 W 149.0 W 

Performance/Watt 14.2 img/sec/W 3.2 img/sec/W 

Table 2 Inference performance, power, and energy efficiency on Titan X and Xeon E5-2698 v3. 

The comparison between Titan X and Xeon E5 reinforces the same conclusion as the comparison 
between Tegra X1 and Core i7: GPUs appear to be capable of significantly higher energy efficiency for 
deep learning inference on AlexNet. In the case of Titan X, the GPU not only provides much better 
energy efficiency than the CPU, but it also achieves substantially higher performance at over 3000 
images/second in the large-batch case compared to less than 500 images/second on the CPU. While 
larger batch sizes are more efficient to process, the comparison between Titan X and Xeon E5 with no 
batching proves that the GPU’s efficiency advantage is present even for smaller batch sizes. In 
comparison with Tegra X1, the Titan X manages to achieve competitive Performance/Watt despite its 
much bigger GPU, as the large 12 GB framebuffer allows it to run more efficient but memory-capacity-
intensive FFT-based convolutions. 

Finally, Table 3 presents inference results on GoogLeNet. As mentioned before, IDLF provides no support 
for GoogLeNet, and alternative deep learning frameworks have never been optimized for CPU 
performance. Therefore, we omit CPU results here and focus entirely on the GPUs. As GoogLeNet is a 
much more demanding network than AlexNet, Tegra X1 cannot run batch size 128 inference due to 
insufficient total memory capacity (4GB on a Jetson™ TX1 board). The massive framebuffer on the Titan 
X is sufficient to allow inference with batch size 128. 

Network: GoogLeNet Batch Size Titan X (FP32) Tegra X1 (FP32) Tegra X1 (FP16) 

Inference Performance 

1 

138 img/sec 33 img/sec 33 img/sec 
Power 119.0 W 5.0 W 4.0 W 

Performance/Watt 1.2 img/sec/W 6.5 img/sec/W 8.3 img/sec/W 

Inference Performance 
128 (Titan X) 
64 (Tegra X1) 

 863 img/sec 52 img/sec 75 img/sec 

Power 225.0 W 5.9 W 5.8 W 

Performance/Watt 3.8 img/sec/W 8.8 img/sec/W 12.8 img/sec/W 

Table 3 GoogLeNet inference results on Tegra X1 and Titan X. Tegra X1's total memory capacity is not sufficient to run batch size 
128 inference. 

Compared to AlexNet, the results show significantly lower absolute performance values, indicating how 
much more computationally demanding GoogLeNet is. However, even on GoogLeNet, all GPUs are 
capable of achieving real-time performance on a 30 fps camera feed. 

  

http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf



Improvement on ImagNet Benchmark



Recurrent Neural Networks:
Modeling Sequence Structure

Ø State of the art in speech recognition and machine translation
Ø Required LSTM and GRU to address long dependencies

Ø Similar to the HMM from classical Bayesian ML

The cat in the hat.

El gato en el sombrero



Improvements in Machine Translation &
Automatic Speech Recognition


