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Learning

Big Model

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... major focus of the AMPLab
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Big Model
Application

Timescale: ~20 milliseconds
Systems: online and latency optimized
Less studied ...
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Learning Inference

Timescale: hours to weeks
Systems: combination of systems
Less studied ... Application

Feedback
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Prediction Serving Challenges

» Complexity of deploying new models
» New applications or products (0 = 1 models).
» New data, features, model family: (N = N+1 models).

» Why is it hard: Frameworks not designed for low-latency serving, frameworks
have different APIs, different resource requirements, and different costs.

» System Performance

» Need to ensure low-latency predictions, scalable throughput. Deploying a
new Mmodel can’t degrade system performance.

» Model or Statistical Performance
» Model Selection: Which models to use?
» When to deploy a new model?
» How to adapt to feedback?
» At a meta-level: what are the right metrics for measuring model performance?



LASER: A Scalable Response
Prediction Platform for Online
Advertising

Agarwal et al. 2014
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LASER Overview

Top-down system design enforced by company organizational structure

Priwck.ed a model (logistic regression) and built the system based on that
choice

>
>
» Force data-scientists to use this model, express features in specialized
configuration language

>

Result: System and model family are tightly coupled
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Addressing Deployment Complexity

>

>

Fixed Model Choice: Can be hardcoded into system, no need for
API to specify model

Configuration language: specify feature construction in JSON-
based configuration language

» Restricts feature transformations to be built fromm component library

» Allows for changes in pipeline without service restarts or code modification
» Allows easy re-use of common features across an organization

» Similar to PMML, PFA

Language details

» Source: translate data to numeric feature vectors

» [ransformer: \lector-to-vector transformations (transform, aggregate)

» Assembler: Concatenates all feature pipelines together into single vector



Addressing System Performance

» Precompute second-order interaction terms
» The LASER logistic regression model includes second order interaction

terms between user and campaig:feay/

zgt_aj _I_

» Don’t wait for delayed features
» Features can be delayed by slow DB lookup, expensive computation

» Solution: Substitute expected value for missing features and degrade
accuracy, not latency

» Solution: Cache precomputed scalar products in PRC, save overhead
of re-computing features and dot products which are lazily evaluated



Addressing Model Performance

» Decompose model into slowly-changing and quickly-changing
components

» Fast retraining of warm-start (quickly-changing) component of model without
cost of full retraining

1,c 2,c

27w Warm Start
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Trained Online

ijt

Cold Start
Trained Offline
» Explore/Exploit with Thompson Sampling
» Sometimes serve ads with low empirical mean but high-variance

» Draw sample from posterior distribution over parameters and use
sample to predict CTR instead of mode

> In practice, hold @ ., fixed and sample from@,



Some Takeaways from LASER

» System performance is paramount in the broader application
context

» Slow page load has much larger impact on revenue than poor ad-
recommendation

» AUC/accuracy is not always the most useful model performance
metric

» The more assumptions you can make about your tools
(software, models) the more tricks you can play (config
language, shared features, warm-start/cold-start decomposition)

» Safe for LASER to make these assumptions because they are enforced
through extra-technological methods

» Similar to some of the design choices we saw in Borg last week
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Goals of Clipper

» Design Choice: General purpose, easy to use prediction
serving system
» (Generalize to many different ML applications (contrast to LASER
which was designed to address LinkedIn’s ad-targeting needs)

» (Generalize to many frameworks/tools for a single application
» Don’t tie the hands of data scientists developing models

» Make it simple for a data-scientist to deploy a new model into
production

» Given these design choices, maximize system and model
performance using model-agnostic techniques



Clipper Generalizes Models Across ML Frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

sl NETFLIX

theano Datoy& Can T
Create f dmic =

KGYStOﬂ@ML Caffe tensorriow mxnet @LDI




Clipper Architecture
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Clipper Architecture
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RPC/REST Interface
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RPC/REST Interface § opserve

Improve accuracy through ensembles,
online learning and personalization

Model Selection Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Wrapper (MW)
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Clipper Architecture
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Model Abstraction Layer
Adaptive Batching cHion Laye

RPCI RPCI RPCI RPCI
Model Wrapper (MW)
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RPC]
Model Wrapper (MW)
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RPC]

Caffe

RPCI

)

RPC]

Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems
» Models run in separate processes (Docker containers)

> Resource isolation
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Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes
» Resource isolation
» Scale-out

Problem: frameworks optimized for batch processing not latency



Adaptive Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load

may generate
many queries

Clipper Solution:

Hardware be as slow as allowed. ..

Acceleration

» Inc. batch size until the latency objective
IS exceeded (Additive Increase)

;GRPC Helps amortize > If latency exceeds SLO cut batch size
yy system overhead

by a fraction (Multiplicative Decrease)




Adaptive Batching to Improve Throughput

[ 1 Adaptive B Quantile Regression Hll No Batching
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Clipper Architecture
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Selection Policy Model Selection Layer

Goal:

Maximize accuracy through bandits and ensembles,
online learning, and personalization

Incorporate feedback in real-time to achieve:

» robust predictions by combining multiple models &
frameworks

» online learning and personalization by selecting and
personalizing predictions in response to feedback
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Model Selection Policy

Improves prediction accuracy by:
» Incorporates real-time feedback

» Estimates confidence of
predictions

» Determines how to combine
multiple predictions
» €.9., choose best, average, ...
» enables frameworks to compete

Slow Changing

Model

. scikit
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Cost of Ensembles

Increased Load

» Solutions:
» Caching and Batching

» Model Selection prioritizes
frameworks for load-shedding

Slow Changing
Model

Stragglers
> e.g., framework fails to meet SLO

» Solution: Anytime predictions

» Selection policy must select/combine
from available predictions

» e.g., built-in ensemble policy
substitutes expected value




Limitations of Clipper

» Clipper does not address offline model retraining

» By treating deployed models as black boxes, Clipper forgoes
the opportunity to optimize prediction execution of the models
themselves or share computation between models

» Only performs coarse-grained tradeoffs of accuracy, robustness,
and performance.



TensorFlow Serving

» Recently released open-source prediction-serving system from
Google

» Companion to TensorFlow deep-learning ML framework
» Easy to deploy TensorFlow Models

» System automatically manages the lifetime of deployed models

» Watches for new versions, loads and transfers requests to new models
automatically

» System does not address model performance, only system
performance (through batching)



TensorFlow Serving Architecture
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TensorFlow Serving Architecture

= NETFLIX

Predict] ~ RPC/REST Interface

TensorFlow-Serving

Prediction Batching
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Other Prediction-Serving Systems
> Turi

» Company co-founded by Joey, Carlos Guestrin, and others to serve predictions

JCUIl from models (primarily) trained in the GraphlLab Create framework

» Not open-source
» Recently acquired by Apple

» Oryx

ﬁ > Developed by Cloudera for serving Apache Spark Models

Implementation of Lambda Architecture with Spark and Spark Streaming to
incrementally maintain models

» Open source

> PredictionlO

» Open-source Apache Incubating project, the company behind the project was
@B PredictionIO  recently acquired by Salesforce

» Built on Apache Spark, Hbase, Spray, ElasticSearch




