Prediction Systems

Dan Crankshaw
UCB RISE Lab Seminar
10/3/2015

Timescale: minutes to days

Systems: offline and batch optimized

Heavily studied ... major focus of the AMPLab

Inference

Inference

Timescale: ~20 milliseconds

Systems: online and latency optimized

Less studied ...

Inference

Inference

Timescale: hours to weeks

Systems: combination of systems

Less studied ...

Application

Feedback

Inference

Prediction Serving Challenges

- Complexity of deploying new models
 - \triangleright New applications or products ($0 \rightarrow 1 \text{ models}$).
 - New data, features, model family: (N → N+1 models).
 - Why is it hard: Frameworks not designed for low-latency serving, frameworks have different APIs, different resource requirements, and different costs.
- > System Performance
 - Need to ensure low-latency predictions, scalable throughput. Deploying a new model can't degrade system performance.
- Model or Statistical Performance
 - Model Selection: Which models to use?
 - ➤ When to deploy a new model?
 - ➤ How to adapt to feedback?
 - At a meta-level: what are the right metrics for measuring model performance?

LASER: A Scalable Response Prediction Platform for Online Advertising

Agarwal et al. 2014

LASER Overview

- > Top-down system design enforced by company organizational structure
- Picked a model (logistic regression) and built the system based on that choice
- Force data-scientists to use this model, express features in specialized configuration language
- Result: System and model family are tightly coupled

$$p_{ijt} = \frac{1}{1 + \exp(-s_{ijt})}$$

$$s_{ijt} = \omega + s_{ijt}^{1,c} + s_{ijt}^{2,c} + s_{ijt}^{2,\omega}$$

Addressing Deployment Complexity

- Fixed Model Choice: Can be hardcoded into system, no need for API to specify model
- Configuration language: specify feature construction in JSONbased configuration language
 - > Restricts feature transformations to be built from component library
 - > Allows for changes in pipeline without service restarts or code modification
 - Allows easy re-use of common features across an organization
 - ➤ Similar to PMML, PFA

Language details

- Source: translate data to numeric feature vectors
- > Transformer: Vector-to-vector transformations (transform, aggregate)
- > Assembler: Concatenates all feature pipelines together into single vector

Addressing System Performance

Precompute second-order interaction terms

The LASER logistic regression model includes second order interaction terms between user and campaign features:

$$s_{ijt}^{2,c} = x_i' A c_j + \dots$$

Don't wait for delayed features

- Features can be delayed by slow DB lookup, expensive computation
- Solution: Substitute expected value for missing features and degrade accuracy, not latency
- Solution: Cache precomputed scalar products in PRC, save overhead of re-computing features and dot products which are lazily evaluated

Addressing Model Performance

- Decompose model into slowly-changing and quickly-changing components
 - Fast retraining of warm-start (quickly-changing) component of model without cost of full retraining

$$s_{ijt} = \omega + s_{ijt}^{1,c} + s_{ijt}^{2,c} + s_{ijt}^{2,\omega} \quad \text{Warm Start Trained Online}$$

Cold Start Trained Offline

- Explore/Exploit with Thompson Sampling
 - Sometimes serve ads with low empirical mean but high-variance
 - Draw sample from posterior distribution over parameters and use sample to predict CTR instead of mode
 - \succ In practice, hold Θ_c fixed and sample from Θ_w

Some Takeaways from LASER

- System performance is paramount in the broader application context
 - Slow page load has much larger impact on revenue than poor adrecommendation
- AUC/accuracy is not always the most useful model performance metric
- The more assumptions you can make about your tools (software, models) the more tricks you can play (config language, shared features, warm-start/cold-start decomposition)
 - Safe for LASER to make these assumptions because they are enforced through extra-technological methods
 - > Similar to some of the design choices we saw in Borg last week

Clipper

A Low-Latency Online Prediction

Serving System

Daniel Crankshaw,

Xin Wang

Giulio Zhou

Michael Franklin,

Joseph E. Gonzalez

Ion Stoica

Goals of Clipper

- Design Choice: General purpose, easy to use prediction serving system
 - Generalize to many different ML applications (contrast to LASER which was designed to address LinkedIn's ad-targeting needs)
 - Generalize to *many frameworks/tools* for a single application
 - > Don't tie the hands of data scientists developing models
 - Make it simple for a data-scientist to deploy a new model into production
- Given these design choices, maximize system and model performance using model-agnostic techniques

Clipper Generalizes Models Across ML Frameworks

Fraud Detection

Content Rec.

Personal Asst.

Robotic Control Machine Translation

Clipper

Applications

Predict 1

RPC/REST Interface

Clipper

Applications

Predict 1

RPC/REST Interface

Clipper

RPCT
Model Wrapper (MW)

Keystone

RPC T

MW

Caffe

RPC I

RPC I

Applications

Predict 1

RPC/REST Interface

Clipper

Improve accuracy through ensembles, online learning and personalization

Model Selection Layer

Provide a **common interface** to models while **bounding latency** and **maximizing throughput**.

Model Abstraction Layer

RPC I

RPC]

RPC

Model Wrapper (MW)

MW

MW

Caching

Adaptive Batching

Model Abstraction Layer

RPC

Model Wrapper (MW)

Keystone

RPC

MW

Caffe

RPC 1

MW

RPC T

MW

Approximate Caching

Adaptive Batching

Model Abstraction Layer

Common Interface → Simplifies Deployment:

- > Evaluate models using original code & systems
- Models run in separate processes (Docker containers)
 - Resource isolation

Common Interface → Simplifies Deployment:

- > Evaluate models using original code & systems
- Models run in separate processes
 - > Resource isolation
 - Scale-out

Problem: frameworks optimized for batch processing not latency

Adaptive Batching to Improve Throughput

Why batching helps:

A single page load may generate many queries

Hardware Acceleration

Helps amortize system overhead

- > Optimal batch depends on:
 - hardware configuration
 - model and framework
 - system load

Clipper Solution:

be as **slow** as **allowed**...

- Inc. batch size until the latency objective is exceeded (Additive Increase)
- ➤ If latency exceeds SLO cut batch size by a fraction (Multiplicative Decrease)

Adaptive Batching to Improve Throughput

Model Selection Layer

Goal:

Maximize accuracy through bandits and ensembles, online learning, and personalization

Incorporate feedback in real-time to achieve:

- robust predictions by combining multiple models & frameworks
- online learning and personalization by selecting and personalizing predictions in response to feedback

Inference

Model Selection Policy

Improves prediction accuracy by:

- Incorporates real-time feedback
- Estimates confidence of predictions

- Determines how to combine multiple predictions
 - > e.g., choose best, average, ...
 - > enables frameworks to compete

Cost of Ensembles

Increased Load

- > Solutions:
 - Caching and Batching
 - Model Selection prioritizes frameworks for load-shedding

Stragglers

- > e.g., framework fails to meet SLO
- > Solution: Anytime predictions
 - Selection policy must select/combine from available predictions
 - e.g., built-in ensemble policy substitutes expected value

Limitations of Clipper

- Clipper does not address offline model retraining
- By treating deployed models as black boxes, Clipper forgoes the opportunity to optimize prediction execution of the models themselves or share computation between models
- Only performs coarse-grained tradeoffs of accuracy, robustness, and performance.

TensorFlow Serving

- Recently released open-source prediction-serving system from Google
- Companion to TensorFlow deep-learning ML framework
- Easy to deploy TensorFlow Models
- System automatically manages the lifetime of deployed models
 - Watches for new versions, loads and transfers requests to new models automatically
- System does not address model performance, only system performance (through batching)

TensorFlow Serving Architecture

Applications

Predict 1

RPC/REST Interface

TensorFlow-Serving

Prediction Batching

New model version trained

TensorFlow Serving Architecture

RPC/REST Interface

Other Prediction-Serving Systems

Turi

- Company co-founded by **Joey**, Carlos Guestrin, and others to serve predictions from models (primarily) trained in the GraphLab Create framework
- Not open-source
- Recently acquired by Apple

> Oryx

- Developed by Cloudera for serving Apache Spark Models
- Implementation of Lambda Architecture with Spark and Spark Streaming to incrementally maintain models
- Open source

PredictionIO

- Open-source Apache Incubating project, the company behind the project was
 PredictionIO
 recently acquired by Salesforce
 - ➤ Built on Apache Spark, Hbase, Spray, ElasticSearch