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Timescale: ~20 milliseconds
Systems: online and latency optimized
Less studied …
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Timescale: hours to weeks
Systems: combination of systems
Less studied …
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Prediction Serving Challenges
Ø Complexity of deploying new models

Ø New applications or products (0 à 1 models).
Ø New data, features, model family: (N à N+1 models).
Ø Why is it hard: Frameworks not designed for low-latency serving, frameworks 

have different APIs, different resource requirements, and different costs.
Ø System Performance

Ø Need to ensure low-latency predictions, scalable throughput. Deploying a 
new model can’t degrade system performance.

Ø Model or Statistical Performance
Ø Model Selection: Which models to use?
Ø When to deploy a new model?
Ø How to adapt to feedback?
Ø At a meta-level: what are the right metrics for measuring model performance?



LASER: A Scalable Response 
Prediction Platform for Online 

Advertising
Agarwal et al. 2014



LASER Overview
Ø Top-down system design enforced by company organizational structure
Ø Picked a model (logistic regression) and built the system based on that 

choice
Ø Force data-scientists to use this model, express features in specialized 

configuration language
Ø Result: System and model family are tightly coupled

pijt =
1

1 + exp(�sijt)

sijt = ! + s1,cijt + s2,cijt + s2,!ijt



Addressing Deployment Complexity
Ø Fixed Model Choice: Can be hardcoded into system, no need for 

API to specify model
Ø Configuration language: specify feature construction in JSON-

based configuration language
Ø Restricts feature transformations to be built from component library
Ø Allows for changes in pipeline without service restarts or code modification
Ø Allows easy re-use of common features across an organization
Ø Similar to PMML, PFA

Ø Language details
Ø Source: translate data to numeric feature vectors
Ø Transformer: Vector-to-vector transformations (transform, aggregate)
Ø Assembler: Concatenates all feature pipelines together into single vector



Addressing System Performance
Ø Precompute second-order interaction terms

Ø The LASER logistic regression model includes second order interaction 
terms between user and campaign features: 

s

2,c
ijt = x

0
iAcj + . . .

Ø Don’t wait for delayed features
Ø Features can be delayed by slow DB lookup, expensive computation
Ø Solution: Substitute expected value for missing features and degrade 

accuracy, not latency
Ø Solution: Cache precomputed scalar products in PRC, save overhead 

of re-computing features and dot products which are lazily evaluated



Addressing Model Performance

Cold Start
Trained Offline

Warm Start
Trained Onlinesijt = ! + s1,cijt + s2,cijt + s2,!ijt

Ø Decompose model into slowly-changing and quickly-changing 
components
Ø Fast retraining of warm-start (quickly-changing) component of model without 

cost of full retraining

Ø Explore/Exploit with Thompson Sampling
Ø Sometimes serve ads with low empirical mean but high-variance
Ø Draw sample from posterior distribution over parameters and use 

sample to predict CTR instead of mode
Ø In practice, hold         fixed and sample from ⇥c ⇥w



Some Takeaways from LASER

Ø System performance is paramount in the broader application 
context
Ø Slow page load has much larger impact on revenue than poor ad-

recommendation
Ø AUC/accuracy is not always the most useful model performance 

metric
Ø The more assumptions you can make about your tools 

(software, models) the more tricks you can play (config
language, shared features, warm-start/cold-start decomposition)
Ø Safe for LASER to make these assumptions because they are enforced 

through extra-technological methods
Ø Similar to some of the design choices we saw in Borg last week
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Goals of Clipper
Ø Design Choice: General purpose, easy to use prediction 

serving system
Ø Generalize to many different ML applications (contrast to LASER 

which was designed to address LinkedIn’s ad-targeting needs)
Ø Generalize to many frameworks/tools for a single application

Ø Don’t tie the hands of data scientists developing models
Ø Make it simple for a data-scientist to deploy a new model into 

production
Ø Given these design choices, maximize system and model 

performance using model-agnostic techniques



Clipper Generalizes Models Across ML Frameworks
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Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
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Model Selection LayerImprove accuracy through ensembles,
online learning and personalization



Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Selection LayerSelection Policy

Model Abstraction Layer
Caching

Adaptive Batching



Caffe

Model Selection LayerSelection Policy

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Caching

Adaptive Batching

Provide a common interface to models while 



Correction LayerCorrection Policy
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Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes (Docker containers)

Ø Resource isolation
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Common Interface à Simplifies Deployment: 
Ø Evaluate models using original code & systems
Ø Models run in separate processes

Ø Resource isolation
Ø Scale-out

Problem: frameworks optimized for batch processing not latency



A single 
page load 
may generate
many queries

Adaptive Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Clipper Solution:

be as slow as allowed…

Ø Inc. batch size until the latency objective 
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size 
by a fraction (Multiplicative Decrease)

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead



Adaptive Batching to Improve Throughput

25.5x
throughput 

increase
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Goal:
Maximize accuracy through bandits and ensembles, 
online learning, and personalization

Incorporate feedback in real-time to achieve:
Ø robust predictions by combining multiple models & 

frameworks
Ø online learning and personalization by selecting and 

personalizing predictions in response to feedback

Clipper
Model Selection LayerSelection Policy
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Model Selection Policy
Improves prediction accuracy by:
Ø Incorporates real-time feedback

Ø Estimates confidence of 
predictions

Ø Determines how to combine 
multiple predictions

Ø e.g., choose best, average, …
Ø enables frameworks to compete



Increased Load
Ø Solutions: 

Ø Caching and Batching
Ø Model Selection prioritizes 

frameworks for load-shedding

Stragglers
Ø e.g., framework fails to meet SLO

Ø Solution: Anytime predictions
Ø Selection policy must select/combine 

from available predictions
Ø e.g., built-in ensemble policy 

substitutes expected value
Ca
ffe

Slow Changing
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Fast Changing
User Model

Clipper

Cost of Ensembles

?



Limitations of Clipper
Ø Clipper does not address offline model retraining

Ø By treating deployed models as black boxes, Clipper forgoes 
the opportunity to optimize prediction execution of the models 
themselves or share computation between models

Ø Only performs coarse-grained tradeoffs of accuracy, robustness, 
and performance.



TensorFlow Serving
Ø Recently released open-source prediction-serving system from 

Google
Ø Companion to TensorFlow deep-learning ML framework
Ø Easy to deploy TensorFlow Models
Ø System automatically manages the lifetime of deployed models

Ø Watches for new versions, loads and transfers requests to new models 
automatically

Ø System does not address model performance, only system 
performance (through batching)
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Other Prediction-Serving Systems
Ø Turi

Ø Company co-founded by Joey, Carlos Guestrin, and others to serve predictions 
from models (primarily) trained in the GraphLab Create framework

Ø Not open-source
Ø Recently acquired by Apple

Ø Oryx
Ø Developed by Cloudera for serving Apache Spark Models
Ø Implementation of Lambda Architecture with Spark and Spark Streaming to 

incrementally maintain models
Ø Open source

Ø PredictionIO
Ø Open-source Apache Incubating project, the company behind the project was 

recently acquired by Salesforce
Ø Built on Apache Spark, Hbase, Spray, ElasticSearch


