
Prediction Systems
Dan Crankshaw

UCB RISE Lab Seminar
10/3/2015

Big
Data

Big Model

Training

Learning

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... major focus of the AMPLab

Big
Data

Big Model

Training

Application

Decision

Query

?

Learning Inference

Big
Data

Training

Learning
Inference

Big Model
Application

Decision

Query

Timescale: ~20 milliseconds
Systems: online and latency optimized
Less studied …

Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Big
Data

Training

Application

Decision

Learning Inference

Feedback

Timescale: hours to weeks
Systems: combination of systems
Less studied …

Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Responsive
(~10ms)

Adaptive
(~1 seconds)

Prediction Serving Challenges
Ø Complexity of deploying new models

Ø New applications or products (0 à 1 models).
Ø New data, features, model family: (N à N+1 models).
Ø Why is it hard: Frameworks not designed for low-latency serving, frameworks

have different APIs, different resource requirements, and different costs.
Ø System Performance

Ø Need to ensure low-latency predictions, scalable throughput. Deploying a
new model can’t degrade system performance.

Ø Model or Statistical Performance
Ø Model Selection: Which models to use?
Ø When to deploy a new model?
Ø How to adapt to feedback?
Ø At a meta-level: what are the right metrics for measuring model performance?

LASER: A Scalable Response
Prediction Platform for Online

Advertising
Agarwal et al. 2014

LASER Overview
Ø Top-down system design enforced by company organizational structure
Ø Picked a model (logistic regression) and built the system based on that

choice
Ø Force data-scientists to use this model, express features in specialized

configuration language
Ø Result: System and model family are tightly coupled

pijt =
1

1 + exp(�sijt)

sijt = ! + s1,cijt + s2,cijt + s2,!ijt

Addressing Deployment Complexity
Ø Fixed Model Choice: Can be hardcoded into system, no need for

API to specify model
Ø Configuration language: specify feature construction in JSON-

based configuration language
Ø Restricts feature transformations to be built from component library
Ø Allows for changes in pipeline without service restarts or code modification
Ø Allows easy re-use of common features across an organization
Ø Similar to PMML, PFA

Ø Language details
Ø Source: translate data to numeric feature vectors
Ø Transformer: Vector-to-vector transformations (transform, aggregate)
Ø Assembler: Concatenates all feature pipelines together into single vector

Addressing System Performance
Ø Precompute second-order interaction terms

Ø The LASER logistic regression model includes second order interaction
terms between user and campaign features:

s

2,c
ijt = x

0
iAcj + . . .

Ø Don’t wait for delayed features
Ø Features can be delayed by slow DB lookup, expensive computation
Ø Solution: Substitute expected value for missing features and degrade

accuracy, not latency
Ø Solution: Cache precomputed scalar products in PRC, save overhead

of re-computing features and dot products which are lazily evaluated

Addressing Model Performance

Cold Start
Trained Offline

Warm Start
Trained Onlinesijt = ! + s1,cijt + s2,cijt + s2,!ijt

Ø Decompose model into slowly-changing and quickly-changing
components
Ø Fast retraining of warm-start (quickly-changing) component of model without

cost of full retraining

Ø Explore/Exploit with Thompson Sampling
Ø Sometimes serve ads with low empirical mean but high-variance
Ø Draw sample from posterior distribution over parameters and use

sample to predict CTR instead of mode
Ø In practice, hold fixed and sample from ⇥c ⇥w

Some Takeaways from LASER

Ø System performance is paramount in the broader application
context
Ø Slow page load has much larger impact on revenue than poor ad-

recommendation
Ø AUC/accuracy is not always the most useful model performance

metric
Ø The more assumptions you can make about your tools

(software, models) the more tricks you can play (config
language, shared features, warm-start/cold-start decomposition)
Ø Safe for LASER to make these assumptions because they are enforced

through extra-technological methods
Ø Similar to some of the design choices we saw in Borg last week

Daniel Crankshaw,
Xin Wang
Giulio Zhou
Michael Franklin,
Joseph E. Gonzalez
Ion Stoica

A Low-Latency Online Prediction
Serving System

Clipper

Goals of Clipper
Ø Design Choice: General purpose, easy to use prediction

serving system
Ø Generalize to many different ML applications (contrast to LASER

which was designed to address LinkedIn’s ad-targeting needs)
Ø Generalize to many frameworks/tools for a single application

Ø Don’t tie the hands of data scientists developing models
Ø Make it simple for a data-scientist to deploy a new model into

production
Ø Given these design choices, maximize system and model

performance using model-agnostic techniques

Clipper Generalizes Models Across ML Frameworks

Clipper

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create VW
Caffe

Clipper Architecture

Clipper

Applications

Predict ObserveRPC/REST Interface

VW
Caffe
Create

Clipper

Caffe

ust

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Clipper Architecture

Applications

Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and
maximizing throughput.

Model Selection LayerImprove accuracy through ensembles,
online learning and personalization

Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Selection LayerSelection Policy

Model Abstraction Layer
Caching

Adaptive Batching

Caffe

Model Selection LayerSelection Policy

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Caching

Adaptive Batching

Provide a common interface to models while

Correction LayerCorrection Policy

Model Wrapper (MW)
RPC

Caffe
MW

RPC
MW

RPC
MW

RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Common Interface à Simplifies Deployment:
Ø Evaluate models using original code & systems
Ø Models run in separate processes (Docker containers)

Ø Resource isolation

Model Selection LayerSelection Policy

Model Abstraction Layer
Caching

Adaptive Batching

Model Wrapper (MW)
RPC

Caffe
MW

RPC
MW

RPC
MW

RPC
MW

RPC
MW

RPC

Common Interface à Simplifies Deployment:
Ø Evaluate models using original code & systems
Ø Models run in separate processes

Ø Resource isolation
Ø Scale-out

Problem: frameworks optimized for batch processing not latency

A single
page load
may generate
many queries

Adaptive Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Clipper Solution:

be as slow as allowed…

Ø Inc. batch size until the latency objective
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size
by a fraction (Multiplicative Decrease)

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead

Adaptive Batching to Improve Throughput

25.5x
throughput

increase

Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Selection LayerSelection Policy

Model Abstraction Layer
Caching

Adaptive Batching

Goal:
Maximize accuracy through bandits and ensembles,
online learning, and personalization

Incorporate feedback in real-time to achieve:
Ø robust predictions by combining multiple models &

frameworks
Ø online learning and personalization by selecting and

personalizing predictions in response to feedback

Clipper
Model Selection LayerSelection Policy

Ca
ffe

Big
Data

Application

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Model
Selection per-
User

Clipper

Ca
ffe

Slow Changing
Model

Fast Model
Selection per-
User

Clipper

Model Selection Policy
Improves prediction accuracy by:
Ø Incorporates real-time feedback

Ø Estimates confidence of
predictions

Ø Determines how to combine
multiple predictions

Ø e.g., choose best, average, …
Ø enables frameworks to compete

Increased Load
Ø Solutions:

Ø Caching and Batching
Ø Model Selection prioritizes

frameworks for load-shedding

Stragglers
Ø e.g., framework fails to meet SLO

Ø Solution: Anytime predictions
Ø Selection policy must select/combine

from available predictions
Ø e.g., built-in ensemble policy

substitutes expected value
Ca
ffe

Slow Changing
Model

Fast Changing
User Model

Clipper

Cost of Ensembles

?

Limitations of Clipper
Ø Clipper does not address offline model retraining

Ø By treating deployed models as black boxes, Clipper forgoes
the opportunity to optimize prediction execution of the models
themselves or share computation between models

Ø Only performs coarse-grained tradeoffs of accuracy, robustness,
and performance.

TensorFlow Serving
Ø Recently released open-source prediction-serving system from

Google
Ø Companion to TensorFlow deep-learning ML framework
Ø Easy to deploy TensorFlow Models
Ø System automatically manages the lifetime of deployed models

Ø Watches for new versions, loads and transfers requests to new models
automatically

Ø System does not address model performance, only system
performance (through batching)

TensorFlow-Serving

Predict RPC/REST Interface

TensorFlow Serving Architecture

Applications

Prediction Batching

V2V1 V3

New model
version trainedRETIRED

TensorFlow-Serving

Predict RPC/REST Interface

TensorFlow Serving Architecture

Applications

Prediction Batching

V2V1 V3
RETIRED

Other Prediction-Serving Systems
Ø Turi

Ø Company co-founded by Joey, Carlos Guestrin, and others to serve predictions
from models (primarily) trained in the GraphLab Create framework

Ø Not open-source
Ø Recently acquired by Apple

Ø Oryx
Ø Developed by Cloudera for serving Apache Spark Models
Ø Implementation of Lambda Architecture with Spark and Spark Streaming to

incrementally maintain models
Ø Open source

Ø PredictionIO
Ø Open-source Apache Incubating project, the company behind the project was

recently acquired by Salesforce
Ø Built on Apache Spark, Hbase, Spray, ElasticSearch

