
Joseph E. Gonzalez
Asst. Professor, UC Berkeley
jegonzal@cs.berkeley.edu

Prediction Serving



Big
Data

Big Model

Training

Systems for Machine Learning

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... primary focus of the ML research



Big
Data

Big Model

Training

Splash CoCoA
Please make a Logo!



Big
Data

Big Model

Training

Application

Decision

Query

?

Learning Inference



Big
Data

Training

Learning
Inference

Big Model
Application

Decision

Query

Timescale: ~10 milliseconds
Systems: online and latency optimized
Less Studied …



why is                        challenging?
Need to render low latency (< 10ms) predictions for complex

under heavy load with system failures.

Models Queries

To
p 

K

Features
SELECT * FROM
users JOIN items,
click_logs, pages
WHERE …

Inference



Basic Linear Models (Often High Dimensional)
Ø Common for click prediction and text filter models (spam)
Ø Query x encoded in sparse Bag-of-Words: 

Ø x = “The quick brown” = {(”brown”, 1), (”the”, 1), (“quick”, 1)}

Ø Rendering a prediction:

Ø θ is a large vector of weights for each possible word 
Ø or word combination (n-gram models) …
Ø McMahan et al.: billions of coefficients

Predict(x) = �

0

@
X

(w,c)2x

✓

w

c

1

A



Computer Vision and Speech Recognition
Ø Deep Neural Networks (will cover in more detail later):

Ø 100’s of millions of parameters + convolutions & unrolling
Ø Requires hardware acceleration



Computer Vision and Speech Recognition
Ø Deep Neural Networks (will cover in more detail later):

Ø 100’s of millions of parameters + convolutions & unrolling
Ø Requires hardware acceleration

9 
 

Table 2 shows the results for the Titan X GPU and the Xeon E5-2698 v3 server-class processor. 

Network: AlexNet Batch Size Titan X (FP32) Xeon E5-2698 v3 (FP32) 

Inference Performance 

1 

405 img/sec 76 img/sec 
Power 164.0 W 111.7 W 

Performance/Watt 2.5 img/sec/W 0.7 img/sec/W 

Inference Performance 
128 (Titan X) 
48 (Xeon E5) 

3216 img/sec 476 img/sec 

Power 227.0 W 149.0 W 

Performance/Watt 14.2 img/sec/W 3.2 img/sec/W 

Table 2 Inference performance, power, and energy efficiency on Titan X and Xeon E5-2698 v3. 

The comparison between Titan X and Xeon E5 reinforces the same conclusion as the comparison 
between Tegra X1 and Core i7: GPUs appear to be capable of significantly higher energy efficiency for 
deep learning inference on AlexNet. In the case of Titan X, the GPU not only provides much better 
energy efficiency than the CPU, but it also achieves substantially higher performance at over 3000 
images/second in the large-batch case compared to less than 500 images/second on the CPU. While 
larger batch sizes are more efficient to process, the comparison between Titan X and Xeon E5 with no 
batching proves that the GPU’s efficiency advantage is present even for smaller batch sizes. In 
comparison with Tegra X1, the Titan X manages to achieve competitive Performance/Watt despite its 
much bigger GPU, as the large 12 GB framebuffer allows it to run more efficient but memory-capacity-
intensive FFT-based convolutions. 

Finally, Table 3 presents inference results on GoogLeNet. As mentioned before, IDLF provides no support 
for GoogLeNet, and alternative deep learning frameworks have never been optimized for CPU 
performance. Therefore, we omit CPU results here and focus entirely on the GPUs. As GoogLeNet is a 
much more demanding network than AlexNet, Tegra X1 cannot run batch size 128 inference due to 
insufficient total memory capacity (4GB on a Jetson™ TX1 board). The massive framebuffer on the Titan 
X is sufficient to allow inference with batch size 128. 

Network: GoogLeNet Batch Size Titan X (FP32) Tegra X1 (FP32) Tegra X1 (FP16) 

Inference Performance 

1 

138 img/sec 33 img/sec 33 img/sec 
Power 119.0 W 5.0 W 4.0 W 

Performance/Watt 1.2 img/sec/W 6.5 img/sec/W 8.3 img/sec/W 

Inference Performance 
128 (Titan X) 
64 (Tegra X1) 

 863 img/sec 52 img/sec 75 img/sec 

Power 225.0 W 5.9 W 5.8 W 

Performance/Watt 3.8 img/sec/W 8.8 img/sec/W 12.8 img/sec/W 

Table 3 GoogLeNet inference results on Tegra X1 and Titan X. Tegra X1's total memory capacity is not sufficient to run batch size 
128 inference. 

Compared to AlexNet, the results show significantly lower absolute performance values, indicating how 
much more computationally demanding GoogLeNet is. However, even on GoogLeNet, all GPUs are 
capable of achieving real-time performance on a 30 fps camera feed. 

  http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf



Computer Vision and Speech Recognition
Ø Deep Neural Networks (will cover in more detail later):

Ø 100’s of millions of parameters + convolutions & unrolling
Ø Requires hardware acceleration

Using Google's fleet of TPUs, we can 
find all the text in the Street View 
database in less than five days. In 
Google Photos, each TPU can process 
[more than] 100 million photos a day.
-- Norm Jouppi (Google)

http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-computing-looks-like-1326915

>1000 photos a second 
on a cluster of ASICs



Robust Predictions
Ø Often want to quantify prediction accuracy (uncertainty)
Ø Several common techniques

Ø Bayesian Inference 
Ø Need to maintain more statistics about each parameter
Ø Often requires matrix inversion, sampling, or numeric integration

Ø Bagging
Ø Multiple copies of the same model trained on different subsets of data
Ø Linearly increases complexity

Ø Quantile Methods
Ø Relatively lightweight but conservative

Ø In general robust predictions è additional computation



Inference

Big Model
Application

Decision

Query

Two Approaches
ØEager: Pre-Materialize Predictions
ØLazy: Compute Predictions on the fly



Eager: Pre-materialize Predictions
Ø Examples

Ø Zillow might pre-compute popularity scores or house categories 
for all active listings

Ø Netflix might pre-compute top k movies for each user daily
Ø Advantages

Ø Use offline training frameworks for efficient batch prediction
Ø Serving is done using traditional data serving systems

Ø Disadvantages
Ø Frequent updates to models force substantial computation 
Ø Cannot be applied when set of possible queries is large (e.g., 

speech recognition, image tagging, …)



Lazy: Compute predictions at Query Time
Ø Examples

Ø Speech recognition, image tagging 
Ø Ad-targeting based on search terms, available ads, user features

Ø Advantages
Ø Compute only necessary queries
Ø Enables models to be changed rapidly and bandit exploration
Ø Queries do not need to be from small ground set

Ø Disadvantages
Ø Increases complexity and computation overhead of serving system
Ø Requires low and predictable latency from models



Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback



Big
Data

Training

Application

Decision

Learning Inference

Feedback

Timescale: hours to weeks
Issues: No standard solutions …
implicit feedback, sample bias, …



Why is                                       challenging?

Ø Multiple types of feedback:
Ø implicit feedback: absence of the correct label
Ø delayed feedback: need to join feedback with previous 

prediction state
Ø Exposes system to feedback loops

Ø If we only play the top songs how will we discover new hits?
Ø Need to address concept drift and temporal variation

Ø How do we forget the past and model time directly

Closing the Loop 



Management and Monitoring
Ø Desiging specifications and test for ML Systems can be difficult

Ø Entagled dependencies: 
Ø Data and Code
Ø Pipelines

Cat Photo
isCat

Cuteness
Predictor

Cat Classifier Animal
Classifier Cute!

isAnimal



Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback



Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Responsive
(~10ms)

Adaptive
(~1 seconds)



Big
Data

Big Model

Training

Application

Decision

Query

Learning

Feedback

Adaptive
(~1 seconds)

Responsive
(~10ms)

Inference

Today we will focus on 
Inference and Management

Later in the year we will return to 
Feedback.



Vertical Solutions to Real-time Prediction Serving
Ø Ad Click Prediction and Targeting

Ø a multi-billion dollar industry
Ø Latency sensitive, contextualized, high-dimensional models à ranking

Ø Content Recommendation (optional reading)
Ø Typically simple models trained and materialized offline
Ø Moving towards more online learning and adaptation

Ø Face Detection (optional reading)
Ø example of early work in accelerated inference à substantial impact
Ø Widely used Viola-Jones face detection algorithm (prediction cascades)

Ø Automatic Speech Recognition (ASR) (optional reading)
Ø Typically cloud based with limited literature 
Ø Baidu Paper: deep learning + traditional beam search techniques

Ø Heavy use of hardware acceleration to make ”real-time” 40ms latency



Presentations Today
Ø Giulio Zhou: challenges of deployed ML from perspective of 

Google & Facebook 

Ø Noah Golmat: eager prediction serving from within a traditional 
RDBMS using hazy

Ø Dan Crankshaw: The LASER lazy prediction serving system at 
LinkedIn and his ongoing work on the Clipper prediction serving 
system.



Future Directions



Research in Faster Inference
Ø Caching (Pre-Materialization)

Ø Generalize Hazy style Hölder’s Inequality bounds
Ø Cache warming and prefetching & approximate caching

Ø Batching à better tuning of batch sizes
Ø Parallel hardware acceleration

Ø GPU à FPGA à ASIC acceleration
Ø Leveraging heterogeneous hardware with low bit precision
Ø Secure Hardware

Ø Model compression
Ø Distillation (will cover later)
Ø Context specific models

Ø Cascading Models: fast path for easy queries
Ø Inference on the edge: utilize client resources during inference



Research in Model Life-cycle Management
Ø Performance monitoring

Ø Detect potential model failure with limited or no feedback

Ø Incremental model updates
Ø Incorporate feedback in real-time to update entire pipelines

Ø Tracking model dependencies
Ø Ensure features are not corrupted and models are updated in response to 

changes in upstream models

Ø Automatic model selection
Ø Choosing between many candidate models for a given prediction task


