R SE to the challenges of **ntelligent systems**

A brief overview of machine learning research topics in 294

Machine Learning

Timescale: minutes to days Heavily studied ... primary focus of the **ML research**

Improving the Perf. of Inference

Reducing Latency

- > Approximate caching to address high-dim continuous features
- > Anytime predictions to tradeoff accuracy and latency during inference
- Model compression to reduce inference costs (memory and CPU)

Improving Throughput

- Batching & scheduling technique to leverage parallel hardware
- Model cascades to separate simple and complex queries

System Failures

- Graceful degradation as models and resources fail
- > Abstractions to communicate loss of performance to end-user app.

High Perf. Prediction Serving

- Caching techniques fail on continuous features
 - Study locality sensitive hash functions for approximate caching
- \succ Less accurate pred. often better than no pred.
 - Derive anytime inference algs. with error bounds
- \succ Recent models (DNNs) are often large \rightarrow costly
 - Compress models using context (e.g., condition on class bias)
 - Cascade models to separate easy from challenging queries
- ➢ Where are predictions rendered? (mobile, GPU, cloud, …)
 - Split computation across mobile and cloud
 - Schedule models across accelerators to maximize performance

Robust Inference

How do we

> identify inputs that are **outside the domain** of the model

- \succ nighttime images for a daytime model
- recognize poorly performing models without feedback
 - ➢ e.g., feature and label distribution deviates from training data
- Calibrate and communicate uncertainty in predictions
 - ➢ e.g., ensembles & Cls → increased overhead ...

at scale with rapidly changing models and data?

Ensuring Robust Predictions

- > Data is constantly changing (e.g., new features, signal...)
 - detect stale models
 - correct for real-time covariate shift
- \succ Often predicting "unsure" is better than bad predictions:
 - use bootstrap in real-time to quantify uncertainty
 - discriminatively train models that decline to predict
- ➤ How do we know when models are performing poorly?
 - identify failing models without explicit feedback
 - help diagnose models that have failed?

Inference is moving beyond the cloud

Opportunities

- Reduce latency and improve privacy
- Address network partitions

Research Challenges

- Minimize power consumption
- Limited hardware & long life-cycles
- Protect models from attack
- Develop new hybrid models to leverage cloud and devices

Security: Protecting Models

Data is a core asset & models capture the value in data
Expensive: many engineering & compute hours to develop
Models can reveal private information about the data

How do we **protect models** from being stolen?

- Prevent them from being copied from devices (DRM? SGX?)
- > Defend against **active learning attacks** on decision boundaries

How do we identify when models have been stolen?

Watermarks in decision boundaries?

Machine Learning and Security

- Private Predictions
 - partially homomorphic encryption on advanced models
 - combined secure hardware with accelerators (SGX + GPU)
- Active Learning Attacks
 - efficiently learn through queries to prediction services
 - can we identify active learning attacks
- Securing Models
 - protect models deployed on mobile devices
 - watermark a model and its predictions

Why is **Closing the Loop** challenging?

- Combines multiple systems with different design goals
 - Latency vs Throughput
- Exposes system to feedback loops
 - ➤ If we only play the top songs how will we discover new hits?
- Must address concept drift and temporal variation
 - How do we forget the past and model time directly
 - Model complexity should evolve with data
- \succ Personalization and delayed reward \rightarrow emphasis on MTL and RL
- Learning with complex model dependencies
- Robust learning against adverserial data

Dealing with Feedback

- Need to respond to feedback in real-time
 - > avoid costly **retraining** process
 - > how (at what rate) do we **forget** old data
- Feedback may not be explicit or timely
 - Ieverage implicit feedback? (select between models ...)
 - deal with delayed feedback? (stream processing, RL, ...)
- Feedback is biased by our actions
 - Ieverage advances in **bandits** within serving systems
 - ➤ actions offten affect future decisions → RL in serving systems

The focus of Learning Systems in RISE

The focus of Learning Systems in RISE

Prediction Serving Deep Learning Reinforcement Learning