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Goal of this Class
Bootstrap RISE research agenda

• Start new projects or work on existing ones

Read related work in the areas relevant to RISE Lab
• ML, Security, Systems/Databases, Architecture

Allow people from one area learn about state-of-the-art 
research in other areas à key to success in an 
interdisciplinary effort 3



Course Information
Course website is: 

• https://ucbrise.github.io/cs294-rise-fa16/
– It is on Github so you can contribute content! 

• We will be adding a few more updates today and tomorrow 

We will be using Piazza for discussion about the class 
• https://piazza.com/berkeley/fall2016/cs29420/home
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Tentative Lecture Format (not today!)
First 1/3 of each lecture presented by faculty 

• Second 2/3 covers papers presented by students 

Reading assignments should be up several weeks in advance 
• All students are required to read all papers 

All students must answer short questions on google form 
• Student will prepare 15 minute presentations on selected paper
• We will post on Piazza about how to signup later this week 
• Address the questions in the form 
• Identify key insights, strengths and weaknesses, and implications on 

RISE research agenda 
5



Grading Policy
50% Class Participation 

• Answer questions, join discussion, and present papers 
10% Initial Project Proposal Presentation 

• Presented in class on 10/17 
20% Final Project Presentation 

• During class final exam 12/12 
20% Final Project Report 

• Emailed to instructors 12/16 by 11:59 PM 
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Rest of This Talk

Reflect on how 
• Application trends (i.e., user needs & requirements)
• Hardware trends

have impacted the design of our solution

How we can use these lessons to design new systems in the 
context of RISE Lab



The Past and The Lessons



2009: State-of-the-art in Big Data 
Hadoop

• Large scale, flexible data processing engine
• Fault tolerant
• Batch computation (e.g., 10s minutes to hours)

Getting rapid industry traction: 
• High profile users: Facebook, Twitter,  Yahoo!, …
• Distributions: Cloudera, Hortonworks
• Many companies still in austerity mode

9



2009: Application Trends
Interactive computations, e.g., ad-hoc analytics

• SQL engines like Hive and Pig drove this trend

Iterative computations, e.g., Machine Learning
• More and more people aiming to get insights from data
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2009: Application Trends
Despite huge amounts of data, 
many working sets in big data 
clusters fit in memory

11
*G Ananthanarayanan,  A. Ghodsi, S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS
2011

Inputs of 96% of Facebook 
jobs fit in memory*



2009: Application Trends

12*G Ananthanarayanan,  A. Ghodsi, S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS
2011

Memory (GB) Facebook 
(% jobs)

Microsoft 
(% jobs)

Yahoo! 
(% jobs)

8 69 38 66

16 74 51 81

32 96 82 97.5

64 97 98 99.5

128 98.8 99.4 99.8

192 99.5 100 100

256 99.6 100 100
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2009: Hardware Trends
Memory still growing with Moore’s law

I/O throughput and latency stagnant
• HDD dominating data clusters as storage of choice
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2009: Trends Summary
Users require interactivity and support for iterative apps

Majority of working sets of many workloads fit in 
memory

Memory capacity still growing fast, while I/O stagnant
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2009: Our Solution: Apache Spark

In-memory processing

Generalizes MapReduce to multi-stage computations
• Fully implements BSP model



2009: Challenges & Solutions

Low-overhead resilience mechanisms à
• Resilient Distributed Datasets (RDDs)

Efficiently support for ML algos à
• Share data between stages via memory
• Powerful and flexible APIs: map/reduce just two of over 80+ APIs



2012: Application Trends

People started to assemble e2e data analytics pipelines

Need to stitch together a hodgepodge of systems

Raw
Data

ETL Ad-hoc
exploration

Advanced 
Analytics

Data 
Products



2012: Our Solution: Unified Platform

Support a variety of workloads
Support a variety of input sources
Provide a variety of language bindings

…

Spark Core
Python, Java, Scala, R

Spark Streaming
real-time

Spark SQL
interactive

MLlib
machine learning

GraphX
graph

a



2015: Application Trends

New users, new requirements

Spark early adopters

Data Engineers
Data Scientists
Statisticians
R users
PyData …

Users

Understands
MapReduce

& functional APIs



2015: Hardware Trends

Memory capacity continue to grow with Moore’s law

Many clusters and datacenters transitioning to SSDs
• DigitalOcean: SSD only instances since 2013

CPU growth slowing down à becoming the bottleneck



2015: Our Solution

Move to schema-based data abstractions, e.g., DataFrames
• Familiar to data scientists, e.g., R and Python/pandas
• Allows us to in-memory store data in binary format

–Much lower overhead
–Alleviates/Avoids JVM’s garbage collection overhead

Project Tungsten



2015: Project Tungsten

Substantially speed up execution by optimizing CPU 
efficiency, via:

(1) Runtime code generation
(2) Exploiting cache locality
(3) Off-heap memory management

Python
DF

Logical Plan

Java/Scala
DF

R
DF

Tungsten
Execution



What’s Next for RISE Lab?



Overview
Application trends

Hardware trends

Challenges and techniques 
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Application Trends
Data only as valuable as the decisions and actions it enables

What does it mean?
• Faster decisions better than slower decisions
• Decisions on fresh data better than on stale data
• Decisions on personal data better than on aggregate data 
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Application Trends
Real-time decisions 

decide in ms
on live data

the current state as data arrives 
with strong security

privacy, confidentiality, and integrity

decide in ms
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Applications Quality
Latency

Security
Decision Update

Zero-time defense sophisticated, accurate, robust sec sec privacy, integrity

Parking assistant sophisticated, robust sec sec privacy

Disease discovery sophisticated, accurate sec/min hours privacy, integrity

IoT (smart buildings) sophisticated, robust sec min/hour privacy, integrity

Earthquake warning sophisticated, accurate, robust ms min integrity

Chip manufacturing sophisticated, accurate, robust sec/min min confidentiality, integrity 

Fraud detection sophisticated, accurate ms min privacy, integrity

“Fleet” driving sophisticated, accurate, robust sec sec privacy, integrity

Virtual assistants sophisticated, robust sec min/hour integrity

Video QoS at scale sophisticated ms/sec min privacy, integrity
Addressing these challenges, the goal of next Berkeley lab: 

RISE (Real-time Secure Execution) Lab 



Research areas
Systems: parallel computation engines providing 
msec latency and 10k-100K job throughput
Machine Learning:
• On-line ML algorithms
• Robust algorithms: handle noisy data, guarantee 
worst-case behavior

Security: achieve privacy, confidentiality, and integrity
without impacting performance

31

Goal: develop Secure Real-time Decision Stack, 
an open source platform, tools and algorithms

for real-time decisions on live data with strong security



Overview
Application trends

Hardware trends

Challenges and techniques 
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Moore’s law is slowing down
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What does it mean?
CPUs affected most: only 15-20%/year perf. improvements

• More complex layouts, harder to scale
• Exploring these improvements hard à parallel programs

Memory: still grows at 30-40%/year
• Regular layouts, stacked technologies

Network: grows at 30-50%/year
• 100/200/400GBpE NICs at horizon
• Full-bisection bandwidth network topologies

34
CPUs is the bottleneck and it’s getting worse! 
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Memory-to-core ratio increasing 
e.g., AWS: 7-8GB/vcore à 17GB/vcore (X1)



Unprecedented hardware innovation
From CPU to specialized chips:

• GPUs, FPGAs, ASICs/co-processors (e.g., TPU)
• Tightly integrated (e.g., Intel’s latest Xeon integrates CPU & 

FPGA)

New memory technologies
• HBM (High Bandwidth Memory)
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High Bandwidth Memory (HBM)

37

2 channels @ 
128 bits

8 channels = 
1024 bits



High Bandwidth Memory (HBM)

38

8 stacks = 
4096 bits à
500 GB/sec
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3D XPoint Technology

Developed by Intel and Micron
•Announced last year; products released this year

Characteristics:
• Non-volatile memory
• 2-5x DRAM latency!
• 8-10x density of DRAM
• 1000x more resilient than SSDs
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“Renaissance of hardware design” – David Patterson



Overview
Application trends

Hardware trends

Challenges and techniques 
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Complexity – Computation 

44

Software

CPU

Software

CPU GPU FPGA ASIC
+

SGX



Complexity – Memory 

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HHD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~1 TB

~10 msec / ~100 MB/s / ~10 TB

2015

~10 msec / ~100 MB/s / ~100 TB

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HHD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~10 TB

HBM ~10 ns / ~1TB/s / ~10GB

NVM (3D 
Xpoint) ~1 usec / ~10GB/s / ~1TB

2020



Complexity – more and more choices 
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Microsoft 
AZURE

Basic tier: A0, A1, A2, A3, A4
Optimized Compute : D1, D2, 
D3, D4, D11, D12, D13
D1v2, D2v2, D3v2, D11v2,…
Latest CPUs: G1, G2, G3, …
Network Optimized: A8, A9
Compute Intensive: A10, A11,…

Amazon 
EC2

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge, 
m4.4xlarge, m3.medium, 
c4.large, c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge 
d2.2xlarge, d2.4xlarge,…

n1-standard-1, ns1-standard-2, 
ns1-standard-4, ns1-standard-8, 
ns1-standard-16, ns1highmem-2, 
ns1-highmem-4, ns1-highmem-8, 
n1-highcpu-2, n1-highcpu-4, n1-
highcpu-8, n1-highcpu-16, n1-
highcpu-32, f1-micro, g1-small…

Google Cloud 
Engine



Complexity – more and more constraints 
Latency

Accuracy 

Cost

Security
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Techniques of conquering complexity
Use additional choices to simplify!

Expose and control tradeoffs

Don’t forget “tried & true” techniques
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Use choices to simplify!
Example: NVIDIA DGX-1 supercomputer for Deep 

Learning

49

HBM
(720TB/s / 

16GB)

…
HBM

(720TB/s / 
16GB)

HBM
(720TB/s / 

16GB)

Persistent des-aggregate storage
(NAND SSDs, 25usec / 100 Gbps / 7 TB)

100 GB/s

Pascal P100



Use choices to simplify!
Possible datacenter architecture (e.g., FireBox, UC Berkeley)
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L1/L2 cache

L3 cache

Main memory

L1/L2 cache

L3 cache

Main memory

L1/L2 cache

L3 cache

Main memory

…

Ulta-fast persistent des-aggregated storage 
(~10 usec / ~ 10 GBs / ~ 1 PB)



Expose and control tradeoffs
Latency vs. accuracy

• Approximate query processing (e.g., BlinkDB)
• Decompose ML algos: light weight, ensemble and correction 

model  (e.g., Clipper)

Latency (response time) vs. cost 
• Predict response times given configuration (e.g., Earnest)

Security vs. latency vs. accuracy
• E.g., CryptDB, Opaque
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“Tried & true” techniques
Sampling

• Scheduling (e.g., Sparrow), computation (e.g., BlinkDB),  storage (e.g., 
KMN)

Batching
• Scheduling (e.g., Drizzle)

Speculation:
• Replicate time-sensitive requests/jobs (e.g., Dolly)

Incremental algorithms
• Updates (e.g., IndexedRDDs), and Machine Learning (e.g., Clipper) 
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Summary
We are at an inflection point both in terms of apps and 
hardware trends, and RISE lab is at the intersection of it

Many opportunities

Be aware of “complexity”: use myriad choices available 
to simplify! 
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