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Goal of this Class

Bootstrap RISE research agenda
« Start new projects or work on existing ones

Read related work 1n the areas relevant to RISE Lab
« ML, Security, Systems/Databases, Architecture

Allow people from one area learn about state-of-the-art
research in other areas = key to success in an
interdisciplinary effort



Course Information

Course website 1s:
e https://ucbrise.github.10/cs294-rise-fal6/

- It 1s on Github so you can contribute content!
« We will be adding a few more updates today and tomorrow

We will be using Piazza for discussion about the class
* https://p1azza.com/berkeley/tall2016/cs29420/home




Tentative Lecture Format (not today!)
First 1/3 of each lecture presented by faculty

« Second 2/3 covers papers presented by students

Reading assignments should be up several weeks 1n advance
 All students are required to read all papers

All students must answer short questions on google form
 Student will prepare 15 minute presentations on selected paper
« We will post on Piazza about how to signup later this week

« Address the questions in the form
» Identify key insights, strengths and weaknesses, and implications on

RISE research agenda
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Grading Policy

50% Class Participation

« Answer questions, join discussion, and present papers
10% Initial Project Proposal Presentation

* Presented in class on 10/17
20% Final Project Presentation

 During class final exam 12/12

20% Final Project Report
« Emailed to instructors 12/16 by 11:59 PM



Rest of This Talk

Retflect on how

 Application trends (1.e., user needs & requirements)
« Hardware trends

have impacted the design of our solution

How we can use these lessons to design new systems 1n the
context of RISE Lab



The Past and The Lessons



2009: State-of-the-art in Big Data
Hadoop | | | hadEem;

- Large scale, flexible data processing engine

» Fault tolerant (

» Batch computation (e.g., 10s minutes to hours) Qg4
Getting rapid industry traction:

 High profile users: Facebook, Twitter, Yahoo!,

* Distributions: Cloudera, Hortonworks 1}}]

« Many companies still in austerity mode 51?1‘01 37 C ._

\ Of 2 008
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2009: Application Trends

Interactive computations, e.g., ad-hoc analytics
« SQL engines like Hive and Pig drove this trend

[terative computations, €.g., Machine Learning
« More and more people aiming to get insights from data
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2009: Application Trends

N
o

Despite huge amounts of data,
many working sets in big data
clusters fit in memory

%))

Input Size (TB)
=
<)

o U

Inputs of 96% of Facebook

jobs fit in memory* 0 20 40 60 80 100
Job Percentile

*G Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, “Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS
2011
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2009: Application Trends

Memory (GB) Facebook Microsoft
(% jobs) (% jobs)

8 69 38 66

16 74 51 81

32 96 82 97.5

64 97 98 99.5

128 98.8 99.4 99.8

192 99.5 100 100

256 99.6 100 100

*G Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS
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2009: Application Trends
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2009: Hardware Trends

Memory still growing with Moore’s law

I/O throughput and latency stagnant
« HDD dominating data clusters as storage of choice

14



2009: Trends Summary

Users require interactivity and support for iterative apps

Majority of working sets of many workloads fit in
memory

Memory capacity still growing fast, while I/O stagnant

15



2009: Our Solution: Apache Spark S p 0 ’_"’(\Z

In-memory processing

Generalizes MapReduce to multi-stage computations
e Fully implements BSP model



2009: Challenges & Solutions S folo r"’(\Z

[Low-overhead resilience mechanisms =2
 Resilient Distributed Datasets (RDDs)

Efficiently support for ML algos =
« Share data between stages via memory
- Powerful and flexible APIs: map/reduce just two of over 80+ APIs



2012: Application Trends

People started to assemble e2e data analytics pipelines

< >
RaW -
Data

Need to stitch together a hodgepodge of systems



2012: Our Solution: Unified Platform SPQ[‘"(\Z

Support a variety of workloads
Support a variety of mnput sources

Provide a variety of language bindings
Spark SQL § Spark Streaming MLIib GraphX
interactive real-time machine learning graph
Python, Java, Scala, R

GolEpbmm 5 amazon Sy n = ™

WebseI'ViceS*” cassandra OpenStad( Google Compute Engin HSQL@



2015: Application Trends

New users, new requirements

Spark early adopters —~
i@‘hadamp
& Users
({ . [\ 4
\
.“ Understands
MapReduce

& functional APIs

Data Engineers
Data Scientists
Statisticians

R users
PyData ...



2015: Hardware Trends

Memory capacity continue to grow with Moore’s law

Many clusters and datacenters transitioning to SSDs
 DigitalOcean: SSD only instances since 2013

CPU growth slowing down =2 becoming the bottleneck



2015: Our Solution

Move to schema-based data abstractions, e.g., DataFrames
« Familiar to data scientists, e.g., R and Python/pandas
 Allows us to in-memory store data in binary format

- Much lower overhead
- Alleviates/Avoids JVM’s garbage collection overhead

Project Tungsten



2015: Project Tungsten

Substantially speed up execution by optimizing CPU
efficiency, via: Python JavalSecala R

DF DF DF

(1) Runtime code generation \l/

Logical Plan

(2) Exploiting cache locality
(3) Off-heap memory management '

Tungsten
Execution



What’s Next for RISE Lab?



Overview

Application trends
Hardware trends

Challenges and techniques
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Application Trends

Data only as valuable as the decisions and actions 1t enables

What does 1t mean?

- Faster decisions better than slower decisions

« Decisions on fresh data better than on stale data

« Decisions on personal data better than on aggregate data
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Application Trends

Real-time decisions

decide in ms

on live data

with strong security
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Application Trends

Real-time decisions

decide in ms

on live data

the current state of the environment

with strong security

privacy, confidentiality, integrity



Latency
Applications Quality Security
Decision Update

Zero-time defense sophisticated, accurate, robust sec sec privacy, integrity
Parking assistant sophisticated, robust sec sec | privacy

Disease discovery sophisticated, accurate sec/min hours privacy, integrity
loT (smart buildings) sophisticated, robust sec min/hour privacy, integrity
Earthquake warning sophisticated, accurate, robust min integrity

Chip manufacturing sophisticated, accurate, robust | sec/min min confidentiality, integrity
Fraud detection sophisticated, accurate ms min privacy, integrity
“Fleet” driving sophisticated, accurate, robust sec sec privacy, integrity

Addressing these challenges, the goal of next Berkeley lab:

RISE (Real-time Secure Execution) Lab



Research areas

Systems: parallel computation engines providing
msec latency and 10k-100K job throughput

Goal: develop Secure Real-time Decision Stack,

an open source platform, tools and algorithms
for real-time decisions on live data with strong security

Security: achieve privacy, confidentiality, and integrity

without impacting performance
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Overview

Application trends
Hardware trends

Challenges and techniques
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Moore’s law 1s slowing down
nature............

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video |

"I;eg‘ll}g‘?JOQV N EDTET) TR TRy v
I ri

S

The chips are down for Moore’s law

The semiconductor industry will soon abandon its pursuit of Moore's law. Now things
could get a lot more interesting.

ntel Puts the Brakes on |

Moore’s Law ., TECHNOLOGY QUARTERLY
B8 AFTER MOORE'S LAW

Computing

Double, double, toil and trouble




What does 1t mean?

CPUs affected most: only 15-20%/year perf. improvements
« More complex layouts, harder to scale
 Exploring these improvements hard > parallel programs
Memory: still grows at 30-40%/year
« Regular layouts, stacked technologies
Network: grows at 30-50%/year
« 100/200/400GBpE NICs at horizon

e Fuill-hicection handwidth network tonolooies

CPUs 1s the bottleneck and 1t’s getting worse!




What does 1t mean?

CPUs affected most: only 15-20%/year perf. improvements
« More complex layouts, harder to scale
 Exploring these improvements hard > parallel programs
Memory: still grows at 30-40%/year
 Regular layouts, stacked technologies
Network: grows at 30-50%/year
« 100/200/400GBpE NICs at horizon

Memory-to-core ratio increasing

e.g., AWS: 7-8GB/vcore =2 17GB/vcore (X1)



Unprecedented hardware innovation

From CPU to specialized chips:
« GPUs, FPGAs, ASICs/co-processors (e.g., TPU)

« Tightly integrated (e.g., Intel’s latest Xeon integrates CPU &
FPGA)

New memory technologies
« HBM (High Bandwidth Memory)
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High Bandwidth Memory (HBM) > channels @

128 bits

THE INTERPOSER
THE NEXT STEP IN INTEGRATION

Brings DRAM as close as possible to the logic die Stacked Memory
Improving proximity enables extremely wide bus /

widths

Logic Die
Improving proximity simplifies communication and \ CPU/GPU
clocking >

Improving proximity greatly improves bandwidth

per watt Package

Substrate

Allows for integration of disparate technologies
such as DRAM

AMD developed industry partnerships
with ASE, Amkor & UMC to develop
the first high-volume manufacturable

interposer solution
Interposer

8 channels =
1024 bits 37




High Bandwidth Memory (HBM) 8 stacks =

4096 bits =

500 GB/sec

HIGH-BANDWIDTH MEMORY
DRAM BUILT FOR AN INTERPOSER

4 A new type of memory chip with low
power consumption and an ultra-
wide bus width

Many of those chips stacked vertically like
floors in a skyscraper

New interconnects, called “through-silicon
vias” (TSVs) and “pbumps”, connect one
DRAM chip to the next

TSVs and pbumps also used to connect
the SoC/GPU to the interposer GPUICPUISoc Die

and develop the firet complete - II'L"-"-%i I'E'h
specification and prototype for HBM Package Suhstrate




Unprecedented hardware innovation

From CPU to specialized chips:
« GPUs, FPGAs, ASICs/co-processors (e.g., TPU)

« Tightly integrated (e.g., Intel’s latest Xeon integrates CPU &
FPGA)

New memory technologies
-« HBM2: 8 DRAM chips/package = 1TB/sec
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Unprecedented hardware innovation

From CPU to specialized chips:
« GPUs, FPGAs, ASICs/co-processors (e.g., TPU)

« Tightly integrated (e.g., Intel’s latest Xeon integrates CPU &
FPGA)

New memory technologies
« HBM2: 8 DRAM chips/package = 1TB/sec
« 3D XPoint
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3D XPoint Technology

Developed by Intel and Micron

« Announced last year; products released this year

Characteristics:
« Non-volatile memory
 2-5x DRAM latency!
« 8-10x density of DRAM
« 1000x more resilient than SSDs




Unprecedented hardware innovation

From CPU to specialized chips:
« GPUs, FPGAs, ASICs/co-processors (e.g., TPU)

« Tightly integrated (e.g., Intel’s latest Xeon integrates CPU &
FPGA)

New memory technologies
« HBM2: 8 DRAM chips/package = 1TB/sec

“Renaissance of hardware design™ — David Patterson




Overview

Application trends
Hardware trends

Challenges and techniques
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Complexity — Computation

Software Software

it

CPU

44



Complexity — Memory

2015 2020

L1/L2 cache ~1 ns L1/L2 cache ~1 ns

~10
L3cache  JRRIES ns
~10ns / ~1TB/s / ~10GB

ERNSIt Al ~100 ns / ~80 GB/s / ~100GB ~100 ns / ~80 GB/s / ~100GB
NAVAV/

NN 100 usec / ~10 GB/s / ~1 TB B
NSRRI 100 usec / ~10 GB/s / ~10 TB

Fast HHD ~10 msec /~100 MB/s / ~10 TB Fast HHD

~1 usec / ~10GB/s / ~1TB

~10 msec/~100 MB/s / ~100 TB



Complexity — more and more choices

Basic tier: AO, A1, A2, A3, A4
Optimized Compute : D1, D2,
D3, D4, D11, D12, D13
D1v2, D2v2, D3v2, D11v2,...
Latest CPUs: G1, G2, G3, ...
Network Optimized: A8, A9

Compute Intensive: A10, A11,...

Microsoft
AZURE

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge,
m4.4xlarge, m3.medium,
cd.large, c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge
d2.2xlarge, d2.4xlarge,...

Amazon
EC2

n1-standard-1, ns1-standard-2,
ns1-standard-4, ns1-standard-8,
ns1-standard-16, ns1highmem-2,
ns1-highmem-4, ns1-highmem-8,
n1-highcpu-2, n1-highcpu-4, n1-
highcpu-8, n1-highcpu-16, n1-
highcpu-32, f1-micro, g1-small...

Google Cloud
Engine
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Complexity — more and more constraints

Latency
Accuracy

Cost

Security

47



Techniques of conquering complexity

Use additional choices to simplify!
Expose and control tradeofts

Don’t forget “tried & true” techniques

48



Use choices to simplify!
Example: NVIDIA DGX-1 supercomputer for Deep

Learnino
HBM
20TB/s /

o 1 (S (=) o =] A L= (<)
1 { [} . 1 5 7 .

Pascal P100

‘ flOO GB/s

HBM HBM
(720TB/s / (720TB/s /

Persistent des-aggregate storage

(NAND SSDs, 25usec / 100 Gbps / 7 TB)

49



Use choices to simplify!

Possible datacenter architecture (e.g., FireBox, UC Berkeley)

L1/L2 cache

L.1/L2 cache L1/L2 cache

Ulta-fast persistent des-aggregated storage

(~10 usec/~ 10 GBs/~ 1 PB)

50



Expose and control tradeoffs

Latency vs. accuracy
« Approximate query processing (e.g., BlinkDB)
« Decompose ML algos: light weight, ensemble and correction
model (e.g., Clipper)

Latency (response time) vs. cost
« Predict response times given configuration (e.g., Earnest)

Security vs. latency vs. accuracy
 E.g., CryptDB, Opaque
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“Tried & true” techniques

Sampling
» Scheduling (e.g., Sparrow), computation (e.g., BlinkDB), storage (e.g.,
KMN)

Batching
 Scheduling (e.g., Drizzle)

Speculation:
 Replicate time-sensitive requests/jobs (e.g., Dolly)

Incremental algorithms

 Updates (e.g., IndexedRDDs), and Machine Learning (e.g., Clipper)
52



Summary

We are at an inflection point both in terms of apps and
hardware trends, and RISE lab i1s at the intersection of it

Many opportunities

Be aware of “complexity”: use myriad choices available
to stmplify!
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