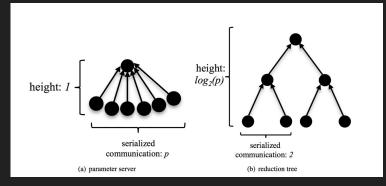

Sammy Sidhu


TL;DR

- Main Operations
 - Convolutions \rightarrow Few Parameters, heavy compute
 - Matrix Multiplication \rightarrow Tons of parameters, fast to compute given parameters size
 - Pooling, reduces number of parameters needed but lose resolution

- Typically when training on 1 GPU, convolutions dominate compute
- When you have many GPUs, Communication becomes an issue.

Training with multiple GPUs

- Data Vs Model Parallelism
- Single Node (Typically up to 8 GPUs)
 - 40 PCI-e lanes per CPU
 - PCI + QPI is typically fast enough
- Multiple Nodes (4-8 GPUs per Machine)
 - Sync vs Async
 - Faster Networking (Infiniband + MPI)
 - RDMA (Direct GPU vs Memory)
 - Merging Gradients (Tree Merge -- FireCaffe style)

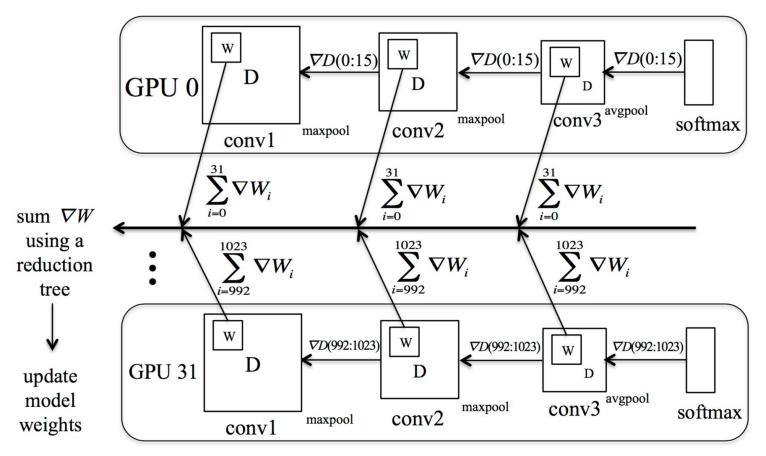
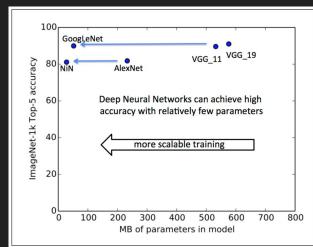
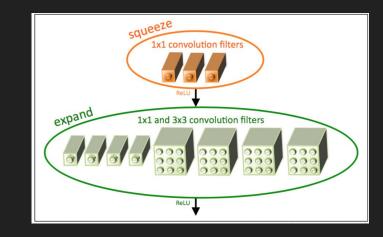




Figure 1. Data parallel DNN training in FireCaffe: Each worker (GPU) gets a subset of each batch.

What kinds of models are good for parallel training?

- Less parameters \rightarrow Less communication
- More Convolutions → less parameters
- We can see this progression in NN architecture as well
- AlexNet (138M) \rightarrow googLeNet (~12M) \rightarrow NiN (~8M) \rightarrow ResNet-152 (~2M)
- SqueezeNet(1.2M, ~400k pruned)

FireCaffe with googLeNet

Table 3. Accelerating the training of ultra-deep, computationally intensive models on ImageNet-1k.												
	Hardware	Net	Epochs	Batch	Initial Learning	Train	Speedup	Top-1	Top-5			
				size	Rate	time		Accuracy	Accuracy			
Caffe	1 NVIDIA K20	GoogLeNet	64	32	0.01	21 days	1x	68.3%	88.7%			
		[41]										
FireCaffe	32 NVIDIA K20s (Titan	GoogLeNet	72	1024	0.08	23.4	20x	68.3%	88.7%			
(ours)	supercomputer)					hours						
FireCaffe	128 NVIDIA K20s (Titan	GoogLeNet	72	1024	0.08	10.5	47x	68.3%	88.7%			
(ours)	supercomputer)					hours						

SqueezeNet Results

CNN	Compression	Data	$Original \rightarrow$	Reduction in	Top-1	Top-5
architecture	Approach	Туре	Compressed Model Size	Model Size vs.	ImageNet	ImageNet
	Teach and			AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD [5]	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%
AlexNet	Network	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
	Pruning [11]					
AlexNet	Deep Compres-	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
	sion [10]					
SqueezeNet	None	32 bit	4.8MB	50x	57.5%	80.3%
(ours)						
SqueezeNet	Deep	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
(ours)	Compression					
SqueezeNet	Deep	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%
(ours)	Compression					